IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v91y2016icp34-47.html
   My bibliography  Save this article

A data-driven approach to manpower planning at U.S.–Canada border crossings

Author

Listed:
  • Yu, Mengqiao
  • Ding, Yichuan
  • Lindsey, Robin
  • Shi, Cong

Abstract

We investigate the staffing problem at Peace Arch, one of the major U.S.–Canada border crossings, with the goal of reducing time delay without compromising the effectiveness of security screening. Our data analytics show how the arrival rates of vehicles vary by time of day and day of week, and that the service rate per booth varies considerably by the time of day and the number of active booths. We propose a time-varying queueing model to capture these dynamics and use empirical data to estimate the model parameters using a multiple linear regression. We then formulate the staffing task as an integer programming problem and derive a near-optimal workforce schedule. Simulations reveal that our proposed workforce policy improves on the existing schedule by about 18% in terms of average delay without increasing the total work hours of the border staff.

Suggested Citation

  • Yu, Mengqiao & Ding, Yichuan & Lindsey, Robin & Shi, Cong, 2016. "A data-driven approach to manpower planning at U.S.–Canada border crossings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 34-47.
  • Handle: RePEc:eee:transa:v:91:y:2016:i:c:p:34-47
    DOI: 10.1016/j.tra.2016.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416305080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Fangyun Tan & Serguei Netessine, 2014. "When Does the Devil Make Work? An Empirical Study of the Impact of Workload on Worker Productivity," Management Science, INFORMS, vol. 60(6), pages 1574-1593, June.
    2. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    3. Zhe George Zhang, 2009. "Performance Analysis of a Queue with Congestion-Based Staffing Policy," Management Science, INFORMS, vol. 55(2), pages 240-251, February.
    4. Kim, Seongmoon, 2009. "The toll plaza optimization problem: Design, operations, and strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 125-137, January.
    5. Zhe George Zhang & Hsing Paul Luh & Chia-Hung Wang, 2011. "Modeling Security-Check Queues," Management Science, INFORMS, vol. 57(11), pages 1979-1995, November.
    6. Lin, Lei & Wang, Qian & Sadek, Adel W., 2014. "Border crossing delay prediction using transient multi-server queueing models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 65-91.
    7. Takeshi Nagae & Takashi Akamatsu, 2006. "Dynamic Revenue Management of a Toll Road Project under Transportation Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 6(3), pages 345-357, September.
    8. Pengfei Guo & Zhe George Zhang, 2013. "Strategic Queueing Behavior and Its Impact on System Performance in Service Systems with the Congestion-Based Staffing Policy," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 118-131, September.
    9. Trien T. Nguyen & Randall M. Wigle, 2011. "Border Delays Re-Emerging Priority: Within-Country Dimensions for Canada," Canadian Public Policy, University of Toronto Press, vol. 37(1), pages 49-59, March.
    10. Boronico, Jess S. & Siegel, Philip H., 1998. "Capacity planning for toll roadways incorporating consumer wait time costs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(4), pages 297-310, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Cen & Zhuang, Jun, 2017. "N-stage security screening strategies in the face of strategic applicants," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 292-301.
    2. Lin, Lei & Wang, Qian & Sadek, Adel W., 2014. "Border crossing delay prediction using transient multi-server queueing models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 65-91.
    3. Liu, Zhongyi & Liu, Jingchen & Zhai, Xin & Wang, Guanying, 2019. "Police staffing and workload assignment in law enforcement using multi-server queueing models," European Journal of Operational Research, Elsevier, vol. 276(2), pages 614-625.
    4. Marina Milenković & Miloš Nikolić & Draženko Glavić, 2022. "Optimization of toll road lane operation: Serbian case study," Operational Research, Springer, vol. 22(5), pages 5297-5322, November.
    5. Lingjiao Zhang & Jinting Wang & Yilin Wang, 2023. "Strategic Behavior and Optimization of an M/M/1 Queue with N-Policy and Hysteretic Control," Methodology and Computing in Applied Probability, Springer, vol. 25(4), pages 1-29, December.
    6. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    7. Michael Freeman & Nicos Savva & Stefan Scholtes, 2017. "Gatekeepers at Work: An Empirical Analysis of a Maternity Unit," Management Science, INFORMS, vol. 63(10), pages 3147-3167, October.
    8. Maria R. Ibanez & Jonathan R. Clark & Robert S. Huckman & Bradley R. Staats, 2018. "Discretionary Task Ordering: Queue Management in Radiological Services," Management Science, INFORMS, vol. 64(9), pages 4389-4407, September.
    9. Masoud Kamalahmadi & Qiuping Yu & Yong-Pin Zhou, 2021. "Call to Duty: Just-in-Time Scheduling in a Restaurant Chain," Management Science, INFORMS, vol. 67(11), pages 6751-6781, November.
    10. Diwas S. KC & Bradley R. Staats & Maryam Kouchaki & Francesca Gino, 2020. "Task Selection and Workload: A Focus on Completing Easy Tasks Hurts Performance," Management Science, INFORMS, vol. 66(10), pages 4397-4416, October.
    11. Legros, Benjamin & Jouini, Oualid, 2019. "On the scheduling of operations in a chat contact center," European Journal of Operational Research, Elsevier, vol. 274(1), pages 303-316.
    12. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    13. Cen Song & Jun Zhuang, 2017. "Two-stage security screening strategies in the face of strategic applicants, congestions and screening errors," Annals of Operations Research, Springer, vol. 258(2), pages 237-262, November.
    14. Tolga Tezcan & Jiheng Zhang, 2014. "Routing and Staffing in Customer Service Chat Systems with Impatient Customers," Operations Research, INFORMS, vol. 62(4), pages 943-956, August.
    15. Tom Fangyun Tan & Serguei Netessine, 2019. "When You Work with a Superman, Will You Also Fly? An Empirical Study of the Impact of Coworkers on Performance," Management Science, INFORMS, vol. 65(8), pages 3495-3517, August.
    16. Hummy Song & Anita L. Tucker & Karen L. Murrell, 2015. "The Diseconomies of Queue Pooling: An Empirical Investigation of Emergency Department Length of Stay," Management Science, INFORMS, vol. 61(12), pages 3032-3053, December.
    17. Zhang, Zhe George & Yin, Xiaoling, 2021. "Information and pricing effects in two-tier public service systems," International Journal of Production Economics, Elsevier, vol. 231(C).
    18. Ahmad M. Ashkanani & Benjamin B. Dunford & Kevin J. Mumford, 2022. "Impact of Motivation and Workload on Service Time Components: An Empirical Analysis of Call Center Operations," Management Science, INFORMS, vol. 68(9), pages 6697-6715, September.
    19. Gu, Weihua & Cassidy, Michael J. & Li, Yuwei, 2012. "On the capacity of highway checkpoints: Models for unconventional configurations," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1308-1321.
    20. Tom F. Tan & Bradley R. Staats, 2020. "Behavioral Drivers of Routing Decisions: Evidence from Restaurant Table Assignment," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 1050-1070, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:91:y:2016:i:c:p:34-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.