IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v78y2015icp361-370.html
   My bibliography  Save this article

Lane-harmonised passenger car equivalents for heterogeneous expressway traffic

Author

Listed:
  • Yeung, Jian Sheng
  • Wong, Yiik Diew
  • Secadiningrat, Julius Raditya

Abstract

In order to account for variations in traffic composition during traffic analysis, passenger car equivalent (PCE) factors are used to convert flow rates of various vehicle classes into flow rates in terms of passenger car units (PCUs). Earlier studies have developed various methods to estimate PCE values but only a few of them are based on uninterrupted traffic flow, particularly for flow regimes with heterogeneous traffic where differential (lower) speed limits are imposed on commercial vehicles. This paper proposes a lane-harmonisation approach, which leverages on the high variation in traffic composition across the lanes, to estimate PCE factors for urban expressways. Multiple linear regression is used and the PCE factors obtained for motorcycles, light goods vehicles, and heavy goods vehicles are 0.65, 1.53, and 2.75, respectively. The estimated capacity flow rate after the application of the obtained PCE factors is around 2200 PCUs per hour per lane.

Suggested Citation

  • Yeung, Jian Sheng & Wong, Yiik Diew & Secadiningrat, Julius Raditya, 2015. "Lane-harmonised passenger car equivalents for heterogeneous expressway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 361-370.
  • Handle: RePEc:eee:transa:v:78:y:2015:i:c:p:361-370
    DOI: 10.1016/j.tra.2015.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415001597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Kaisy, Ahmed F. & Hall, Fred L. & Reisman, Emily S., 2002. "Developing passenger car equivalents for heavy vehicles on freeways during queue discharge flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(8), pages 725-742, October.
    2. Hurdle, V. F. & Son, Bongsoo, 2000. "Road test of a freeway model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(7), pages 537-564, September.
    3. Benekohal, Rahim F. & Zhao, Weixiong, 2000. "Delay-based passenger car equivalents for trucks at signalized intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(6), pages 437-457, August.
    4. Webster, Nathan & Elefteriadou, Lily, 1999. "A simulation study of truck passenger car equivalents (PCE) on basic freeway sections," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 323-336, June.
    5. Kimber, R. M. & McDonald, M. & Hounsell, N., 1985. "Passenger car units in saturation flows: Concept, definition, derivation," Transportation Research Part B: Methodological, Elsevier, vol. 19(1), pages 39-61, February.
    6. Basu, Debasis & Maitra, Swati Roy & Maitra, Bhargab, 2006. "Modelling passenger car equivalency at an urban midblock using stream speed as measure of equivalence," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 34, pages 75-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toan, Trinh Dinh & Lam, Soi Hoi & Wong, Yiik Diew & Meng, Meng, 2022. "Development and validation of a driving simulator for traffic control using field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    2. Wei Xu & Dillip Kumar Das & Željko Stević & Marko Subotić & Adel F. Alrasheedi & Shiru Sun, 2023. "Trapezoidal Interval Type-2 Fuzzy PIPRECIA-MARCOS Model for Management Efficiency of Traffic Flow on Observed Road Sections," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    3. Tanto Adi Waluyo & Muhammad Zudhy Irawan & Dewanti, 2022. "Adopting Electric Motorcycles for Ride-Hailing Services: Influential Factors from Driver’s Perspective," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    4. Singfat Chu, 2018. "Singapore’s Vehicle Quota System and its impact on motorcycles," Transportation, Springer, vol. 45(5), pages 1419-1432, September.
    5. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    2. Wei Xu & Dillip Kumar Das & Željko Stević & Marko Subotić & Adel F. Alrasheedi & Shiru Sun, 2023. "Trapezoidal Interval Type-2 Fuzzy PIPRECIA-MARCOS Model for Management Efficiency of Traffic Flow on Observed Road Sections," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    3. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    4. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    5. Li, Hongwei & Zhong, Xin & Zhang, Wenbo & Li, Sulan & Xing, Yingying, 2020. "An algorithm for e-bike equivalents at signalized intersections based on traffic conflict events number," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 78-95.
    6. Arasan, V. Thamizh & Arkatkar, Shriniwas S., 2011. "Microsimulation study of vehicular interactions in heterogeneous traffic flow on intercity roads," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 48, pages 60-86.
    7. Arkatkar, Arasan, 2012. "Micro-simulation study of vehicular interactions on upgrades of intercity roads under heterogeneous traffic conditions in India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 52, pages 1-1.
    8. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    9. Al-Kaisy, Ahmed F. & Hall, Fred L. & Reisman, Emily S., 2002. "Developing passenger car equivalents for heavy vehicles on freeways during queue discharge flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(8), pages 725-742, October.
    10. Basu, Debasis & Maitra, Swati Roy & Maitra, Bhargab, 2006. "Modelling passenger car equivalency at an urban midblock using stream speed as measure of equivalence," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 34, pages 75-87.
    11. Mathew, Tom V. & Ravishankar, K.V.R., 2012. "Neural network based vehicle-following model for mixed traffic conditions," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 52, pages 1-4.
    12. Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    13. Adriaan Hendrik van der Weijde, 2014. "Price Differentiation and Discrimination in Transport Networks," Tinbergen Institute Discussion Papers 14-099/VIII, Tinbergen Institute.
    14. Wei, Fangfang & Jia, Ning & Ma, Shoufeng, 2016. "Day-to-day traffic dynamics considering social interaction: From individual route choice behavior to a network flow model," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 335-354.
    15. Juan Carlos Muñoz & Carlos F. Daganzo, 2003. "Structure of the Transition Zone Behind Freeway Queues," Transportation Science, INFORMS, vol. 37(3), pages 312-329, August.
    16. Yi Wang & Jian Rong & Chenjing Zhou & Xin Chang & Siyang Liu, 2020. "An Analysis of the Interactions between Adjustment Factors of Saturation Flow Rates at Signalized Intersections," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    17. Hossain, M., 2001. "Estimation of saturation flow at signalised intersections of developing cities: a micro-simulation modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(2), pages 123-141, February.
    18. Laval, Jorge A., 2011. "Hysteresis in traffic flow revisited: An improved measurement method," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 385-391, February.
    19. Fernandez, Rodrigo & Valenzuela, Eduardo & Casanello, Federico & Jorquera, Carola, 2006. "Evolution of the TRANSYT model in a developing country," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 386-398, June.
    20. Mohapatra, Smruti Sourava & Bhuyan, P.K & Rao, K.V.Krishna, 2012. "Genetic algorithm fuzzy clustering using GPS data for defining level of service criteria of urban streets," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 52, pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:78:y:2015:i:c:p:361-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.