IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v75y2015icp196-216.html
   My bibliography  Save this article

Prioritizing road extension projects with interdependent benefits under time constraint

Author

Listed:
  • Bagloee, Saeed Asadi
  • Asadi, Mohsen

Abstract

Since transportation projects are costly and resources are limited, prioritizing or sequencing the projects is imperative. This study was inspired by a client who asked: “I have tens of approved road extension projects, but my financial resources are limited. I cannot construct all the projects simultaneously, so can you help me prioritize my projects?” To address this question, the benefits and costs of all the possible scenarios must be known. However, the impacts (or benefit) of road extension projects are highly interdependent, and in sizable cases cannot be specified thoroughly. We demonstrate that the problem is analogous to the Traveling Salesman Problem (TSP). Dynamic change in travel demand during construction is another aspect of the complexity of the problem. The literature is yet to provide efficient methods for large cases. To this end, we developed a heuristic methodology in which the variation of travel demand during the construction period is considered. We introduce a geometrical objective function for which a solution-finding policy based on “gradient maximization” is developed. To address the projects’ interdependency, a special neural network (NN) model was devised. We developed a search engine hybridized of Ant Colony and Genetic Algorithm to seek a solution to the TSP-like problem on the NN based on gradient maximization. The algorithm was calibrated and applied to real data from the city of Winnipeg, Canada, as well as two cases based on Sioux-Falls. The results were reliable and identification of the optimum solution was achievable within acceptable computational time.

Suggested Citation

  • Bagloee, Saeed Asadi & Asadi, Mohsen, 2015. "Prioritizing road extension projects with interdependent benefits under time constraint," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 196-216.
  • Handle: RePEc:eee:transa:v:75:y:2015:i:c:p:196-216
    DOI: 10.1016/j.tra.2015.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415000580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dietrich Braess & Anna Nagurney & Tina Wakolbinger, 2005. "On a Paradox of Traffic Planning," Transportation Science, INFORMS, vol. 39(4), pages 446-450, November.
    2. Lo, Hong K. & Szeto, W.Y., 2009. "Time-dependent transport network design under cost-recovery," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 142-158, January.
    3. Joseph Berechman & Robert Paaswell, 2005. "Evaluation, prioritization and selection of transportation investment projects in New York City," Transportation, Springer, vol. 32(3), pages 223-249, May.
    4. Pas, Eric I. & Principio, Shari L., 1997. "Braess' paradox: Some new insights," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 265-276, June.
    5. Arno Sprecher, 2000. "Scheduling Resource-Constrained Projects Competitively at Modest Memory Requirements," Management Science, INFORMS, vol. 46(5), pages 710-723, May.
    6. H. Martin Weingartner, 1966. "Capital Budgeting of Interrelated Projects: Survey and Synthesis," Management Science, INFORMS, vol. 12(7), pages 485-516, March.
    7. Ellis L. Johnson & Michael M. Kostreva & Uwe H. Suhl, 1985. "Solving 0-1 Integer Programming Problems Arising from Large Scale Planning Models," Operations Research, INFORMS, vol. 33(4), pages 803-819, August.
    8. Hedayat Z. Aashtiani & Hossain Poorzahedy *, 2004. "Braess' phenomenon in the management of networks and dissociation of equilibrium concepts," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(6), pages 469-482, September.
    9. Rothengatter, Werner, 1979. "Application of optimal subset selection to problems of design and scheduling in urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 49-63, March.
    10. G. L. Nemhauser & Z. Ullmann, 1969. "Discrete Dynamic Programming and Capital Allocation," Management Science, INFORMS, vol. 15(9), pages 494-505, May.
    11. Yossi Sheffi, 2005. "The Resilient Enterprise: Overcoming Vulnerability for Competitive Advantage," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262693496, December.
    12. S. Waller & David Fajardo & Melissa Duell & Vinayak Dixit, 2013. "Linear Programming Formulation for Strategic Dynamic Traffic Assignment," Networks and Spatial Economics, Springer, vol. 13(4), pages 427-443, December.
    13. G. Edward Fox & Norman R. Baker & John L. Bryant, 1984. "Economic Models for R and D Project Selection in the Presence of Project Interactions," Management Science, INFORMS, vol. 30(7), pages 890-902, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bagloee, Saeed Asadi & Sarvi, Majid & Wallace, Mark, 2016. "Bicycle lane priority: Promoting bicycle as a green mode even in congested urban area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 102-121.
    2. Wu, Fei & Schonfeld, Paul, 2022. "Optimized two-directional phased development of a rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 424-447.
    3. Saeed Asadi Bagloee & Majid Sarvi & Avishai Ceder, 2017. "Transit priority lanes in the congested road networks," Public Transport, Springer, vol. 9(3), pages 571-599, October.
    4. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Meier & Dennis Kundisch & Jochen Willeke, 2017. "Is it Worth the Effort?," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(2), pages 81-95, April.
    2. Bagloee, Saeed Asadi & (Avi) Ceder, Avishai & Sarvi, Majid & Asadi, Mohsen, 2019. "Is it time to go for no-car zone policies? Braess Paradox Detection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 251-264.
    3. Medaglia, Andres L. & Graves, Samuel B. & Ringuest, Jeffrey L., 2007. "A multiobjective evolutionary approach for linearly constrained project selection under uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 869-894, June.
    4. Santhanam, Radhika & Kyparisis, George J., 1996. "A decision model for interdependent information system project selection," European Journal of Operational Research, Elsevier, vol. 89(2), pages 380-399, March.
    5. Zhao, Chunxue & Fu, Baibai & Wang, Tianming, 2014. "Braess paradox and robustness of traffic networks under stochastic user equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 135-141.
    6. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    7. Bittihn, Stefan & Schadschneider, Andreas, 2021. "The effect of modern traffic information on Braess’ paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    9. Novak, D.C. & Sullivan, J.F. & Sentoff, K. & Dowds, J., 2020. "A framework to guide strategic disinvestment in roadway infrastructure considering social vulnerability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 436-451.
    10. Di, Xuan & He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2014. "Braess paradox under the boundedly rational user equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 86-108.
    11. Mikhail Timonin, 2012. "Maximization of the Choquet integral over a convex set and its application to resource allocation problems," Annals of Operations Research, Springer, vol. 196(1), pages 543-579, July.
    12. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    13. Bittihn, Stefan & Schadschneider, Andreas, 2018. "Braess paradox in a network with stochastic dynamics and fixed strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 133-152.
    14. Debarun Bhattacharjya & Jo Eidsvik & Tapan Mukerji, 2013. "The Value of Information in Portfolio Problems with Dependent Projects," Decision Analysis, INFORMS, vol. 10(4), pages 341-351, December.
    15. Yao, Jia & Huang, Wenhua & Chen, Anthony & Cheng, Zhanhong & An, Shi & Xu, Guangming, 2019. "Paradox links can improve system efficiency: An illustration in traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 35-49.
    16. Wang, Aihu & Tang, Yuanhua & Mohmand, Yasir Tariq & Xu, Pei, 2022. "Modifying link capacity to avoid Braess Paradox considering elastic demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    17. Ye Tian & Miao Sun & Zuoliang Ye & Wei Yang, 2016. "Expanded models of the project portfolio selection problem with loss in divisibility," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(8), pages 1097-1107, August.
    18. Fernández Carazo, Ana & Gómez Núñez, Trinidad & Guerrero Casas, Flor M. & Caballero Fernández, Rafael, 2008. "Evaluación y clasificación de las técnicas utilizadas por las organizaciones, en las últimas décadas, para seleccionar proyectos = Evaluation and classification of the techniques used by organizations," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 5(1), pages 67-115, June.
    19. Richard J. Forrester & Lucas A. Waddell, 2022. "Strengthening a linear reformulation of the 0-1 cubic knapsack problem via variable reordering," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 498-517, August.
    20. Kyparisis, George J. & Gupta, Sushil K. & Ip, Chi-Ming, 1996. "Project selection with discounted returns and multiple constraints," European Journal of Operational Research, Elsevier, vol. 94(1), pages 87-96, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:75:y:2015:i:c:p:196-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.