IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v78y2010i4p250-258.html
   My bibliography  Save this article

Evolution in heterogeneous populations: From migration models to fixation probabilities

Author

Listed:
  • Vuilleumier, S.
  • Goudet, J.
  • Perrin, N.

Abstract

Although dispersal is recognized as a key issue in several fields of population biology (such as behavioral ecology, population genetics, metapopulation dynamics or evolutionary modeling), these disciplines focus on different aspects of the concept and often make different implicit assumptions regarding migration models. Using simulations, we investigate how such assumptions translate into effective gene flow and fixation probability of selected alleles. Assumptions regarding migration type (e.g. source-sink, resident pre-emption, or balanced dispersal) and patterns (e.g. stepping-stone versus island dispersal) have large impacts when demes differ in sizes or selective pressures. The effects of fragmentation, as well as the spatial localization of newly arising mutations, also strongly depend on migration type and patterns. Migration rate also matters: depending on the migration type, fixation probabilities at an intermediate migration rate may lie outside the range defined by the low- and high-migration limits when demes differ in sizes. Given the extreme sensitivity of fixation probability to characteristics of dispersal, we underline the importance of making explicit (and documenting empirically) the crucial ecological/ behavioral assumptions underlying migration models.

Suggested Citation

  • Vuilleumier, S. & Goudet, J. & Perrin, N., 2010. "Evolution in heterogeneous populations: From migration models to fixation probabilities," Theoretical Population Biology, Elsevier, vol. 78(4), pages 250-258.
  • Handle: RePEc:eee:thpobi:v:78:y:2010:i:4:p:250-258
    DOI: 10.1016/j.tpb.2010.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580910000808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2010.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew D. Morgan & Sylvain Gandon & Angus Buckling, 2005. "The effect of migration on local adaptation in a coevolving host–parasite system," Nature, Nature, vol. 437(7056), pages 253-256, September.
    2. Ilkka Hanski & Otso Ovaskainen, 2000. "The metapopulation capacity of a fragmented landscape," Nature, Nature, vol. 404(6779), pages 755-758, April.
    3. Tyutyunov, Yuri & Zhadanovskaya, Ekaterina & Bourguet, Denis & Arditi, Roger, 2008. "Landscape refuges delay resistance of the European corn borer to Bt-maize: A demo-genetic dynamic model," Theoretical Population Biology, Elsevier, vol. 74(1), pages 138-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steiner, Ulrich K. & Tuljapurkar, Shripad, 2020. "Drivers of diversity in individual life courses: Sensitivity of the population entropy of a Markov chain," Theoretical Population Biology, Elsevier, vol. 133(C), pages 159-167.
    2. Iritani, Ryosuke & Iwasa, Yoh, 2014. "Parasite infection drives the evolution of state-dependent dispersal of the host," Theoretical Population Biology, Elsevier, vol. 92(C), pages 1-13.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laguna, M.F. & Abramson, G. & Kuperman, M.N. & Lanata, J.L. & Monjeau, J.A., 2015. "Mathematical model of livestock and wildlife: Predation and competition under environmental disturbances," Ecological Modelling, Elsevier, vol. 309, pages 110-117.
    2. Joyce Maschinski & Michael Ross & Hong Liu & Joe O’Brien & Eric Wettberg & Kristin Haskins, 2011. "Sinking ships: conservation options for endemic taxa threatened by sea level rise," Climatic Change, Springer, vol. 107(1), pages 147-167, July.
    3. Vuilleumier, Séverine & Fontanillas, Pierre, 2007. "Landscape structure affects dispersal in the greater white-toothed shrew: Inference between genetic and simulated ecological distances," Ecological Modelling, Elsevier, vol. 201(3), pages 369-376.
    4. Drielsma, Michael & Love, Jamie, 2021. "An equitable method for evaluating habitat amount and potential occupancy," Ecological Modelling, Elsevier, vol. 440(C).
    5. Cornell, Stephen J. & Ovaskainen, Otso, 2008. "Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes," Theoretical Population Biology, Elsevier, vol. 74(3), pages 209-225.
    6. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    7. Eriksson, A. & Elías-Wolff, F. & Mehlig, B., 2013. "Metapopulation dynamics on the brink of extinction," Theoretical Population Biology, Elsevier, vol. 83(C), pages 101-122.
    8. d’Acampora, Bárbara H.A. & Higueras, Ester & Román, Emilia, 2018. "Combining different metrics to measure the ecological connectivity of two mangrove landscapes in the Municipality of Florianópolis, Southern Brazil," Ecological Modelling, Elsevier, vol. 384(C), pages 103-110.
    9. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    10. Bourhis, Yoann & Poggi, Sylvain & Mammeri, Youcef & Le Cointe, Ronan & Cortesero, Anne-Marie & Parisey, Nicolas, 2017. "Foraging as the landscape grip for population dynamics—A mechanistic model applied to crop protection," Ecological Modelling, Elsevier, vol. 354(C), pages 26-36.
    11. Zhouqiao Ren & Jianhua He & Qiaobing Yue, 2021. "Assessing the Impact of Urban Expansion on Surrounding Forested Landscape Connectivity across Space and Time," Land, MDPI, vol. 10(4), pages 1-14, April.
    12. Bauer, Dana Marie & Swallow, Stephen K. & Paton, Peter W.C., 2010. "Cost-effective species conservation in exurban communities: A spatial analysis," Resource and Energy Economics, Elsevier, vol. 32(2), pages 180-202, April.
    13. Peck, Steven L., 2012. "Networks of habitat patches in tsetse fly control: Implications of metapopulation structure on assessing local extinction probabilities," Ecological Modelling, Elsevier, vol. 246(C), pages 99-102.
    14. Vuilleumier, Séverine & Possingham, Hugh P., 2012. "Interacting populations in heterogeneous environments," Ecological Modelling, Elsevier, vol. 228(C), pages 96-105.
    15. Gaaff, Aris & Reinhard, Stijn, 2012. "Incorporating the value of ecological networks into cost–benefit analysis to improve spatially explicit land-use planning," Ecological Economics, Elsevier, vol. 73(C), pages 66-74.
    16. Munoz, François & Cheptou, Pierre-Olivier & Kjellberg, Finn, 2007. "Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics," Ecological Modelling, Elsevier, vol. 205(3), pages 314-322.
    17. Hashem Althagafi & Sergei Petrovskii, 2021. "Metapopulation Persistence and Extinction in a Fragmented Random Habitat: A Simulation Study," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    18. Bauer, Dana Marie & Swallow, Stephen K., 2013. "Conserving metapopulations in human-altered landscapes at the urban–rural fringe," Ecological Economics, Elsevier, vol. 95(C), pages 159-170.
    19. J Nevil Amos & Andrew F Bennett & Ralph Mac Nally & Graeme Newell & Alexandra Pavlova & James Q Radford & James R Thomson & Matt White & Paul Sunnucks, 2012. "Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-12, February.
    20. M. Heino & I. Hanski, 2000. "Evolution of Migration Rate in a Spatially Realistic Metapopulation Model," Working Papers ir00044, International Institute for Applied Systems Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:78:y:2010:i:4:p:250-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.