IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v108y2016icp75-88.html
   My bibliography  Save this article

Evolutionary dynamics of a quantitative trait in a finite asexual population

Author

Listed:
  • Débarre, Florence
  • Otto, Sarah P.

Abstract

In finite populations, mutation limitation and genetic drift can hinder evolutionary diversification. We consider the evolution of a quantitative trait in an asexual population whose size can vary and depends explicitly on the trait. Previous work showed that evolutionary branching is certain (“deterministic branching†) above a threshold population size, but uncertain (“stochastic branching†) below it. Using the stationary distribution of the population’s trait variance, we identify three qualitatively different sub-domains of “stochastic branching†and illustrate our results using a model of social evolution. We find that in very small populations, branching will almost never be observed; in intermediate populations, branching is intermittent, arising and disappearing over time; in larger populations, finally, branching is expected to occur and persist for substantial periods of time. Our study provides a clearer picture of the ecological conditions that facilitate the appearance and persistence of novel evolutionary lineages in the face of genetic drift.

Suggested Citation

  • Débarre, Florence & Otto, Sarah P., 2016. "Evolutionary dynamics of a quantitative trait in a finite asexual population," Theoretical Population Biology, Elsevier, vol. 108(C), pages 75-88.
  • Handle: RePEc:eee:thpobi:v:108:y:2016:i:c:p:75-88
    DOI: 10.1016/j.tpb.2015.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580915001240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulf Dieckmann & Michael Doebeli, 1999. "On the origin of species by sympatric speciation," Nature, Nature, vol. 400(6742), pages 354-357, July.
    2. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    3. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mullon, Charles & Lehmann, Laurent, 2017. "Invasion fitness for gene–culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission," Theoretical Population Biology, Elsevier, vol. 116(C), pages 33-46.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matessi, Carlo & Schneider, Kristan A., 2009. "Optimization under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 76(1), pages 1-12.
    2. Bagnoli, Franco & Guardiani, Carlo, 2005. "A model of sympatric speciation through assortative mating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 534-574.
    3. Bhattacharyay, A. & Drossel, B., 2005. "Modeling coevolution and sympatric speciation of flowers and pollinators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 159-172.
    4. Cook, James N. & Oono, Y., 2010. "Competitive localization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1849-1860.
    5. José Camacho Mateu & Matteo Sireci & Miguel A Muñoz, 2021. "Phenotypic-dependent variability and the emergence of tolerance in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    6. Troost, T.A. & Kooi, B.W. & Kooijman, S.A.L.M., 2007. "Bifurcation analysis of ecological and evolutionary processes in ecosystems," Ecological Modelling, Elsevier, vol. 204(1), pages 253-268.
    7. Zu, Jian & Wang, Jinliang, 2013. "Adaptive evolution of attack ability promotes the evolutionary branching of predator species," Theoretical Population Biology, Elsevier, vol. 89(C), pages 12-23.
    8. Nurmi, Tuomas & Parvinen, Kalle, 2008. "On the evolution of specialization with a mechanistic underpinning in structured metapopulations," Theoretical Population Biology, Elsevier, vol. 73(2), pages 222-243.
    9. Jonathan Newton, 2017. "The preferences of Homo Moralis are unstable under evolving assortativity," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 583-589, May.
    10. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    11. Alexandros Rigos & Heinrich H. Nax, 2015. "Assortativity evolving from social dilemmas," Discussion Papers in Economics 15/19, Division of Economics, School of Business, University of Leicester.
    12. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    13. Boettiger, Carl & Dushoff, Jonathan & Weitz, Joshua S., 2010. "Fluctuation domains in adaptive evolution," Theoretical Population Biology, Elsevier, vol. 77(1), pages 6-13.
    14. Michael B. Doud & Animesh Gupta & Victor Li & Sarah J. Medina & Caesar A. Fuente & Justin R. Meyer, 2024. "Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Svardal, Hannes & Rueffler, Claus & Hermisson, Joachim, 2015. "A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 99(C), pages 76-97.
    16. Costa, Carolina L.N. & Marquitti, Flavia M.D. & Perez, S. Ivan & Schneider, David M. & Ramos, Marlon F. & de Aguiar, Marcus A.M., 2018. "Registering the evolutionary history in individual-based models of speciation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 1-14.
    17. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    18. Champagnat, Nicolas, 2006. "A microscopic interpretation for adaptive dynamics trait substitution sequence models," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1127-1160, August.
    19. E. Kisdi & F.J.A. Jacobs & S.A.H. Geritz, 2000. "Red Queen Evolution by Cycles of Evolutionary Branching and Extinction," Working Papers ir00030, International Institute for Applied Systems Analysis.
    20. Gong, Yubing & Wang, Li & Xu, Bo, 2012. "Delay-induced diversity of firing behavior and ordered chaotic firing in adaptive neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 548-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:108:y:2016:i:c:p:75-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.