IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v347y2005icp534-574.html
   My bibliography  Save this article

A model of sympatric speciation through assortative mating

Author

Listed:
  • Bagnoli, Franco
  • Guardiani, Carlo

Abstract

A microscopic model is developed, within the frame of the theory of quantitative traits, to study the combined effect of competition and assortativity on the sympatric speciation process, i.e., speciation in the absence of geographical barriers. Two components of fitness are considered: a static one that describes adaptation to environmental factors not related to the population itself, and a dynamic one that accounts for interactions between organisms, e.g. competition. A simulated annealing technique was applied in order to speed up simulations. The simulations show that both in the case of flat and steep static fitness landscapes, competition and assortativity do exert a synergistic effect on speciation. We also show that competition acts as a stabilizing force against extinction due to random sampling in a finite population. Finally, evidence is shown that speciation can be seen as a phase transition.

Suggested Citation

  • Bagnoli, Franco & Guardiani, Carlo, 2005. "A model of sympatric speciation through assortative mating," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 534-574.
  • Handle: RePEc:eee:phsmap:v:347:y:2005:i:c:p:534-574
    DOI: 10.1016/j.physa.2004.08.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104011525
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.08.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. U. Dieckmann & M. Doebeli, 1999. "On the Origin of Species by Sympatric Speciation," Working Papers ir99013, International Institute for Applied Systems Analysis.
    2. Alexey S. Kondrashov & Fyodor A. Kondrashov, 1999. "Interactions among quantitative traits in the course of sympatric speciation," Nature, Nature, vol. 400(6742), pages 351-354, July.
    3. Ulf Dieckmann & Michael Doebeli, 1999. "On the origin of species by sympatric speciation," Nature, Nature, vol. 400(6742), pages 354-357, July.
    4. M. Doebeli & U. Dieckmann, 2000. "Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions," Working Papers ir00040, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharyay, A. & Drossel, B., 2005. "Modeling coevolution and sympatric speciation of flowers and pollinators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 159-172.
    2. Cook, James N. & Oono, Y., 2010. "Competitive localization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1849-1860.
    3. José Camacho Mateu & Matteo Sireci & Miguel A Muñoz, 2021. "Phenotypic-dependent variability and the emergence of tolerance in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    4. Troost, T.A. & Kooi, B.W. & Kooijman, S.A.L.M., 2007. "Bifurcation analysis of ecological and evolutionary processes in ecosystems," Ecological Modelling, Elsevier, vol. 204(1), pages 253-268.
    5. Zu, Jian & Wang, Jinliang, 2013. "Adaptive evolution of attack ability promotes the evolutionary branching of predator species," Theoretical Population Biology, Elsevier, vol. 89(C), pages 12-23.
    6. Débarre, Florence & Otto, Sarah P., 2016. "Evolutionary dynamics of a quantitative trait in a finite asexual population," Theoretical Population Biology, Elsevier, vol. 108(C), pages 75-88.
    7. Matessi, Carlo & Schneider, Kristan A., 2009. "Optimization under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 76(1), pages 1-12.
    8. Nurmi, Tuomas & Parvinen, Kalle, 2008. "On the evolution of specialization with a mechanistic underpinning in structured metapopulations," Theoretical Population Biology, Elsevier, vol. 73(2), pages 222-243.
    9. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    10. Alexandros Rigos & Heinrich H. Nax, 2015. "Assortativity evolving from social dilemmas," Discussion Papers in Economics 15/19, Division of Economics, School of Business, University of Leicester.
    11. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    12. Michael B. Doud & Animesh Gupta & Victor Li & Sarah J. Medina & Caesar A. Fuente & Justin R. Meyer, 2024. "Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Sakamoto, T. & Innan, H., 2020. "Establishment process of a magic trait allele subject to both divergent selection and assortative mating," Theoretical Population Biology, Elsevier, vol. 135(C), pages 9-18.
    14. Cecilia Berardo & Iulia Martina Bulai & Ezio Venturino, 2021. "Interactions Obtained from Basic Mechanistic Principles: Prey Herds and Predators," Mathematics, MDPI, vol. 9(20), pages 1-18, October.
    15. Davison, Raziel & Stadman, Marc & Jongejans, Eelke, 2019. "Stochastic effects contribute to population fitness differences," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    16. E. Kisdi & S.A.H. Geritz, 1999. "Evolutionary Branching and Sympatric Speciation in Diploid Populations," Working Papers ir99048, International Institute for Applied Systems Analysis.
    17. Zvi Drezner & Taly Dawn Drezner, 2020. "Biologically Inspired Parent Selection in Genetic Algorithms," Annals of Operations Research, Springer, vol. 287(1), pages 161-183, April.
    18. Jonathan Newton, 2017. "The preferences of Homo Moralis are unstable under evolving assortativity," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 583-589, May.
    19. Boettiger, Carl & Dushoff, Jonathan & Weitz, Joshua S., 2010. "Fluctuation domains in adaptive evolution," Theoretical Population Biology, Elsevier, vol. 77(1), pages 6-13.
    20. Svardal, Hannes & Rueffler, Claus & Hermisson, Joachim, 2015. "A general condition for adaptive genetic polymorphism in temporally and spatially heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 99(C), pages 76-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:347:y:2005:i:c:p:534-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.