IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v180y2022ics0040162522002037.html
   My bibliography  Save this article

A technological innovation system framework to formulate niche introduction strategies for companies prior to large-scale diffusion

Author

Listed:
  • Ortt, J. Roland
  • Kamp, Linda M.

Abstract

Pioneering companies of radically new technological innovations often suffer from a slow uptake of their innovations and struggle to find the right introduction strategy. This paper aims to conceptualize a Technological Innovation System framework that can be applied to formulate and study niche introduction strategies from a company perspective. It combines insights from two literatures: the socio-technical systems literature and the innovation & strategic management literature. This results in a framework consisting of seven Technological Innovation System building blocks and seven influencing conditions that can influence the building blocks. The Technological Innovation System building blocks in the framework are: product performance and quality; product price; production system; complementary products and services; network formation and coordination; customers; and innovation-specific institutions. The influencing conditions in the framework are: knowledge and awareness of technology; knowledge and awareness of application and market; natural, human and financial resources; competition; macro-economic and strategic aspects; socio-cultural aspects; and accidents and events. The framework can help explore the context around an innovation during the early stages of Technological Innovation System formation and specify the scope, timing and type of niche introduction strategies that fit this context. This is illustrated with two cases: dual-clutch transmission technology and photovoltaic cells.

Suggested Citation

  • Ortt, J. Roland & Kamp, Linda M., 2022. "A technological innovation system framework to formulate niche introduction strategies for companies prior to large-scale diffusion," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:tefoso:v:180:y:2022:i:c:s0040162522002037
    DOI: 10.1016/j.techfore.2022.121671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522002037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    2. Geyer, Anton & Davies, Andrew, 2000. "Managing project-system interfaces: case studies of railway projects in restructured UK and German markets," Research Policy, Elsevier, vol. 29(7-8), pages 991-1013, August.
    3. Douglass C. North, 1990. "A Transaction Cost Theory of Politics," Journal of Theoretical Politics, , vol. 2(4), pages 355-367, October.
    4. Reyer Gerlagh & Bob van der Zwaan & Marjan Hofkes & Ger Klaassen, 2004. "Impacts of CO 2 -Taxes in an Economy with Niche Markets and Learning-by-Doing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 367-394, July.
    5. Clark, Kim B., 1985. "The interaction of design hierarchies and market concepts in technological evolution," Research Policy, Elsevier, vol. 14(5), pages 235-251, October.
    6. Fagerberg, Jan & Fosaas, Morten & Sapprasert, Koson, 2012. "Innovation: Exploring the knowledge base," Research Policy, Elsevier, vol. 41(7), pages 1132-1153.
    7. Ronald Klingebiel & John Joseph, 2016. "Entry timing and innovation strategy in feature phones," Strategic Management Journal, Wiley Blackwell, vol. 37(6), pages 1002-1020, June.
    8. Windrum, Paul & Birchenhall, Chris, 1998. "Is product life cycle theory a special case? Dominant designs and the emergence of market niches through coevolutionary-learning," Structural Change and Economic Dynamics, Elsevier, vol. 9(1), pages 109-134, March.
    9. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    10. J. Roland Ortt, 2010. "Understanding the Pre-diffusion Phases," World Scientific Book Chapters, in: Joe Tidd (ed.), Gaining Momentum Managing the Diffusion of Innovations, chapter 2, pages 47-80, World Scientific Publishing Co. Pte. Ltd..
    11. Rajshree Agarwal & Barry L. Bayus, 2002. "The Market Evolution and Sales Takeoff of Product Innovations," Management Science, INFORMS, vol. 48(8), pages 1024-1041, August.
    12. Malerba, Franco, 2002. "Sectoral systems of innovation and production," Research Policy, Elsevier, vol. 31(2), pages 247-264, February.
    13. Magnusson, Thomas & Berggren, Christian, 2018. "Competing innovation systems and the need for redeployment in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 217-230.
    14. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    15. Kamp, Linda Manon & Bermúdez Forn, Esteban, 2016. "Ethiopia׳s emerging domestic biogas sector: Current status, bottlenecks and drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 475-488.
    16. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    17. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    18. Roger Schroeder & Andrew Van de Ven & Gary Scudder & Douglas Polley, 1986. "Managing innovation and change processes: Findings from the Minnesota innovation research program," Agribusiness, John Wiley & Sons, Ltd., vol. 2(4), pages 501-523.
    19. Dordick, Herbert S., 1990. "The origins of universal service : History as a determinant of telecommunications policy," Telecommunications Policy, Elsevier, vol. 14(3), pages 223-231, June.
    20. Charles Edquist, 2011. "Design of innovation policy through diagnostic analysis: identification of systemic problems (or failures)," Industrial and Corporate Change, Oxford University Press, vol. 20(6), pages 1725-1753, December.
    21. Kamp, Linda M. & Smits, Ruud E. H. M. & Andriesse, Cornelis D., 2004. "Notions on learning applied to wind turbine development in the Netherlands and Denmark," Energy Policy, Elsevier, vol. 32(14), pages 1625-1637, September.
    22. Edquist, Charles, 2011. "Innovation Policy Design: Identification of Systemic Problems," Papers in Innovation Studies 2011/6, Lund University, CIRCLE - Centre for Innovation Research.
    23. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(5), pages 815-849, October.
    24. Leonard-Barton, Dorothy, 1988. "Implementation as mutual adaptation of technology and organization," Research Policy, Elsevier, vol. 17(5), pages 251-267, October.
    25. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    26. DeBresson, Chris, 1995. "Predicting the most likely diffusion sequence of a new technology through the economy: The case of superconductivity," Research Policy, Elsevier, vol. 24(5), pages 685-705, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rhaiem, Khalil & Halilem, Norrin, 2023. "The worst is not to fail, but to fail to learn from failure: A multi-method empirical validation of learning from innovation failure," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    2. Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    3. Aleksey I. Shinkevich & Irina G. Ershova & Farida F. Galimulina, 2022. "Forecasting the Efficiency of Innovative Industrial Systems Based on Neural Networks," Mathematics, MDPI, vol. 11(1), pages 1-25, December.
    4. Medina-Molina, Cayetano & Pérez-Macías, Noemí & Fernández-Fernádez, José Luis, 2023. "The use of micromobility in different contexts. An explanation through the multilevel perspective and QCA," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    5. agarwal, shekhar & Gordon, Anna, 2022. "Complexities for the Indian Economy of China's Growing Technological Competence," OSF Preprints fk3r7, Center for Open Science.
    6. agarwal, shekhar, 2022. "India’s Rising Technology Economy: Sources and Consequences," OSF Preprints x6yzm, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attila Havas & Doris Schartinger & K. Matthias Weber, 2022. "Innovation Studies, Social Innovation, and Sustainability Transitions Research: From mutual ignorance towards an integrative perspective?," CERS-IE WORKING PAPERS 2227, Institute of Economics, Centre for Economic and Regional Studies.
    2. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    3. Sandén, Björn A. & Hillman, Karl M., 2011. "A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden," Research Policy, Elsevier, vol. 40(3), pages 403-414, April.
    4. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    5. Malhotra, Abhishek & Schmidt, Tobias S. & Huenteler, Joern, 2019. "The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 464-487.
    6. Hoppmann, Joern & Huenteler, Joern & Girod, Bastien, 2014. "Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power," Research Policy, Elsevier, vol. 43(8), pages 1422-1441.
    7. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    8. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    9. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    10. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    12. Francisco Chicombo, Adélia Filosa & Musango, Josephine Kaviti, 2022. "Towards a theoretical framework for gendered energy transition at the urban household level: A case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Hu, Rui & Skea, Jim & Hannon, Matthew J., 2018. "Measuring the energy innovation process: An indicator framework and a case study of wind energy in China," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 227-244.
    14. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    15. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    16. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    17. Gosens, Jorrit & Lu, Yonglong & Coenen , Lars, 2013. "Clean-tech Innovation in Emerging Economies: Transnational Dimensions in Technological Innovation System Formation," Papers in Innovation Studies 2013/10, Lund University, CIRCLE - Centre for Innovation Research.
    18. Pradeep Racherla & Munir Mandviwalla, 2013. "Moving from Access to Use of the Information Infrastructure: A Multilevel Sociotechnical Framework," Information Systems Research, INFORMS, vol. 24(3), pages 709-730, September.
    19. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    20. John Aldersey-Williams & Peter A. Strachan & Ian D. Broadbent, 2020. "Validating the “Seven Functions” Model of Technological Innovations Systems Theory with Industry Stakeholders—A Review from UK Offshore Renewables," Energies, MDPI, vol. 13(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:180:y:2022:i:c:s0040162522002037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.