IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v113y2016ipbp308-318.html
   My bibliography  Save this article

The capacity for adopting energy innovations in Portugal: Historical evidence and perspectives for the future

Author

Listed:
  • Bento, Nuno
  • Fontes, Margarida

Abstract

This paper investigates the speed of adoption of energy technologies in a traditionally innovation importing country, Portugal, as compared with countries where these technologies first started. Data were collected on the growth of eight energy-related technologies, both energy supply (e.g. natural gas plants, wind turbines) and end-use (e.g., motorcycles). The analysis is done in terms of the evolution of the number of units and installed capacity, indicating possible scale effects. The results show an average adoption lag of one to two decades relatively to “Core” countries. However, the growth rate increases when a technology arrives at Portugal, confirming the hypothesis that adoption accelerates when technology reaches new markets. Additionally, the duration of diffusion in Portugal is less constrained by the final scale of diffusion, contrasting with previous observations for the Core. The data also uncover the successful diffusion of wind energy in Portugal, showing that growth took off less than a decade after the diffusion in the Core, and achieving similar levels of intensity. The analysis suggests that this was supported by the improvement in the adoption capacity, associated with the development of a wind energy innovation system. These findings open new perspectives for the spatial diffusion of sustainable innovations.

Suggested Citation

  • Bento, Nuno & Fontes, Margarida, 2016. "The capacity for adopting energy innovations in Portugal: Historical evidence and perspectives for the future," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 308-318.
  • Handle: RePEc:eee:tefoso:v:113:y:2016:i:pb:p:308-318
    DOI: 10.1016/j.techfore.2015.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162515002656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2015.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    2. Paola Criscuolo & Rajneesh Narula, 2008. "A novel approach to national technological accumulation and absorptive capacity: aggregating Cohen and Levinthal," The European Journal of Development Research, Taylor and Francis Journals, vol. 20(1), pages 56-73.
    3. Keller, Wolfgang, 2010. "International Trade, Foreign Direct Investment, and Technology Spillovers," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 793-829, Elsevier.
    4. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    5. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    6. Jacobsson, Staffan & Johnson, Anna, 2000. "The diffusion of renewable energy technology: an analytical framework and key issues for research," Energy Policy, Elsevier, vol. 28(9), pages 625-640, July.
    7. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    8. Sanjaya Lall, 2001. "Competitiveness, Technology and Skills," Books, Edward Elgar Publishing, number 2298.
    9. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    10. Richard R. Nelson, 2007. "The changing institutional requirements for technological and economic catch up," International Journal of Technological Learning, Innovation and Development, Inderscience Enterprises Ltd, vol. 1(1), pages 4-12.
    11. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    12. Narula, Rajneesh, 2004. "Understanding absorptive capacities in an "innovation systems" context: consequences for economic and employment growth," Research Memorandum 004, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    13. Nathan Rosenberg & Manuel Trajtenberg, 2009. "A General-Purpose Technology at Work: The Corliss Steam Engine in the Late-Nineteenth-Century United States," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 6, pages 97-135, World Scientific Publishing Co. Pte. Ltd..
    14. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    15. Cappelli, Riccardo & Czarnitzki, Dirk & Kraft, Kornelius, 2014. "Sources of spillovers for imitation and innovation," Research Policy, Elsevier, vol. 43(1), pages 115-120.
    16. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    17. Jennifer Tann & M. J. Breckin, 1978. "The International Diffusion of the Watt Engine, 1775-1825," Economic History Review, Economic History Society, vol. 31(4), pages 541-564, November.
    18. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    19. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    20. Modis, Theodore, 1994. "Determination of the Uncertainties in S-Curve Logistic Fits," OSF Preprints n53pd, Center for Open Science.
    21. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    22. Gordon L. Clark & Neil Wrigley, 1997. "The Spatial Configuration of the Firm and the Management of Sunk Costs," Economic Geography, Taylor & Francis Journals, vol. 73(3), pages 285-304, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palmié, Maximilian & Parida, Vinit & Mader, Anna & Wincent, Joakim, 2023. "Clarifying the scaling concept: A review, definition, and measure of scaling performance and an elaborate agenda for future research," Journal of Business Research, Elsevier, vol. 158(C).
    2. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Barbosa, Juliana & Dias, Luís P. & Simoes, Sofia G. & Seixas, Júlia, 2020. "When is the sun going to shine for the Brazilian energy sector? A story of how modelling affects solar electricity," Renewable Energy, Elsevier, vol. 162(C), pages 1684-1702.
    4. Carlos V. Miguel & Adélio Mendes & Luís M. Madeira, 2018. "An Overview of the Portuguese Energy Sector and Perspectives for Power-to-Gas Implementation," Energies, MDPI, vol. 11(12), pages 1-20, November.
    5. Bento, Nuno & Fontes, Margarida & Barbosa, Juliana, 2021. "Inter-sectoral relations to accelerate the formation of technological innovation systems: Determinants of actors’ entry into marine renewable energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    6. Littlewood, David C. & Kiyumbu, Wilkister L., 2018. "“Hub” organisations in Kenya: What are they? What do they do? And what is their potential?," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 276-285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bento, Nuno & Fontes, Margarida, 2015. "The construction of a new technological innovation system in a follower country: Wind energy in Portugal," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 197-210.
    2. Hu, Rui & Skea, Jim & Hannon, Matthew J., 2018. "Measuring the energy innovation process: An indicator framework and a case study of wind energy in China," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 227-244.
    3. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    4. Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
    5. Edsand, Hans-Erik, 2019. "Technological innovation system and the wider context: A framework for developing countries," Technology in Society, Elsevier, vol. 58(C).
    6. Adela Conchado & Pedro Linares, 2017. "A New ‘Cut’ on Technological Innovation Aiming for Sustainability in a Globalized World," SPRU Working Paper Series 2017-25, SPRU - Science Policy Research Unit, University of Sussex Business School.
    7. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    8. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    9. MacGillivray, Andrew & Jeffrey, Henry & Wallace, Robin, 2015. "The importance of iteration and deployment in technology development: A study of the impact on wave and tidal stream energy research, development and innovation," Energy Policy, Elsevier, vol. 87(C), pages 542-552.
    10. Francisco Chicombo, Adélia Filosa & Musango, Josephine Kaviti, 2022. "Towards a theoretical framework for gendered energy transition at the urban household level: A case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Edsand, Hans, 2016. "Technological Innovation Systems and the wider context: A framework for developing countries," MERIT Working Papers 2016-017, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    12. Rizzi, Francesco & van Eck, Nees Jan & Frey, Marco, 2014. "The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management," Renewable Energy, Elsevier, vol. 62(C), pages 657-671.
    13. Mohammed Adil Sait & Uchendu Eugene Chigbu & Iqbal Hamiduddin & Walter Timo De Vries, 2018. "Renewable Energy as an Underutilised Resource in Cities: Germany’s ‘Energiewende’ and Lessons for Post-Brexit Cities in the United Kingdom," Resources, MDPI, vol. 8(1), pages 1-27, December.
    14. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    15. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
    16. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    18. Markard, Jochen & Hoffmann, Volker H., 2016. "Analysis of complementarities: Framework and examples from the energy transition," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 63-75.
    19. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    20. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:113:y:2016:i:pb:p:308-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.