Advanced Search
MyIDEAS: Login

Parametric bootstrapping with nuisance parameters


Author Info

  • Lee, Stephen M.S.
  • Young, G. Alastair
Registered author(s):


    Bootstrap methods are attractive empirical procedures for assessment of errors in problems of statistical estimation, and allow highly accurate inference in a vast range of parametric problems. Conventional parametric bootstrapping involves sampling from a fitted parametric model, obtained by substituting the maximum likelihood estimator for the unknown population parameter. Recently, attention has focussed on modified bootstrap methods which alter the sampling model used in the bootstrap calculation, in a systematic way that is dependent on the parameter of interest. Typically, inference is required for the interest parameter in the presence of a nuisance parameter, in which case the issue of how best to handle the nuisance parameter in the bootstrap inference arises. In this paper, we provide a general analysis of the error reduction properties of the parametric bootstrap. We show that conventional parametric bootstrapping succeeds in reducing error quite generally, when applied to an asymptotically normal pivot, and demonstrate further that systematic improvements are obtained by a particular form of modified scheme, in which the nuisance parameter is substituted by its constrained maximum likelihood estimator, for a given value of the parameter of interest.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 71 (2005)
    Issue (Month): 2 (February)
    Pages: 143-153

    as in new window
    Handle: RePEc:eee:stapro:v:71:y:2005:i:2:p:143-153

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Bootstrap Confidence set Constrained maximum likelihood estimator Global maximum likelihood estimator Parametric bootstrap Prepivoting;


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Stephen M. S. Lee, 2003. "Prepivoting by weighted bootstrap iteration," Biometrika, Biometrika Trust, vol. 90(2), pages 393-410, June.
    2. J. Carpenter, 1999. "Test inversion bootstrap confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 159-172.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Lloyd, Chris J., 2012. "Computing highly accurate or exact P-values using importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1784-1794.
    2. Godfrey, L.G., 2007. "Alternative approaches to implementing Lagrange multiplier tests for serial correlation in dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3282-3295, April.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:71:y:2005:i:2:p:143-153. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.