IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v163y2023icp535-591.html
   My bibliography  Save this article

Drift burst test statistic in the presence of infinite variation jumps

Author

Listed:
  • Mancini, Cecilia

Abstract

We consider the test statistic devised by Christensen, Oomen and Renò in 2020 to obtain insight into the causes of flash crashes occurring at particular moments in time in the price of a financial asset. Under an Ito semimartingale model containing a drift component, a Brownian component and finite variation jumps, it is possible to identify when the cause is a drift burst (the statistic explodes) or otherwise (the statistic is asymptotically Gaussian). We complete the investigation showing how infinite variation jumps contribute asymptotically. The result is that the jumps never cause the explosion of the statistic. Specifically, when there are no bursts, the statistic diverges only if the Brownian component is absent, the jumps have finite variation and the drift is non-zero. In this case the triggering is precisely the drift. We also find that the statistic could be adopted for a variety of tests useful for investigating the nature of the data generating process, given discrete observations.

Suggested Citation

  • Mancini, Cecilia, 2023. "Drift burst test statistic in the presence of infinite variation jumps," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 535-591.
  • Handle: RePEc:eee:spapps:v:163:y:2023:i:c:p:535-591
    DOI: 10.1016/j.spa.2023.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492300131X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christensen, Kim & Oomen, Roel & Renò, Roberto, 2022. "The drift burst hypothesis," Journal of Econometrics, Elsevier, vol. 227(2), pages 461-497.
    2. Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015. "Spot volatility estimation using delta sequences," Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachele Foschi & Francesca Lilla & Cecilia Mancini, 2020. "Warnings about future jumps: properties of the exponential Hawkes model," Working Papers 13/2020, University of Verona, Department of Economics.
    2. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    3. Maria Elvira Mancino & Tommaso Mariotti & Giacomo Toscano, 2022. "Asymptotic Normality for the Fourier spot volatility estimator in the presence of microstructure noise," Papers 2209.08967, arXiv.org.
    4. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    5. Figueroa-López, José E. & Li, Cheng, 2020. "Optimal kernel estimation of spot volatility of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4693-4720.
    6. Maria Elvira Mancino & Maria Cristina Recchioni, 2015. "Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-33, September.
    7. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
    8. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    9. Curato, Imma Valentina & Mancino, Maria Elvira & Recchioni, Maria Cristina, 2018. "Spot volatility estimation using the Laplace transform," Econometrics and Statistics, Elsevier, vol. 6(C), pages 22-43.
    10. Ghysels, Eric, 2014. "Factor Analysis with Large Panels of Volatility Proxies," CEPR Discussion Papers 10034, C.E.P.R. Discussion Papers.
    11. Richard Y. Chen, 2019. "The Fourier Transform Method for Volatility Functional Inference by Asynchronous Observations," Papers 1911.02205, arXiv.org.
    12. Nabil Bouamara & S'ebastien Laurent & Shuping Shi, 2023. "Sequential Cauchy Combination Test for Multiple Testing Problems with Financial Applications," Papers 2303.13406, arXiv.org, revised Jun 2023.
    13. Zhang, Congshan & Li, Jia & Bollerslev, Tim, 2022. "Occupation density estimation for noisy high-frequency data," Journal of Econometrics, Elsevier, vol. 227(1), pages 189-211.
    14. Christensen, Kim & Oomen, Roel & Renò, Roberto, 2022. "The drift burst hypothesis," Journal of Econometrics, Elsevier, vol. 227(2), pages 461-497.
    15. Liu, Qiang & Liu, Yiqi & Liu, Zhi, 2018. "Estimating spot volatility in the presence of infinite variation jumps," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1958-1987.
    16. Liu, Qiang & Liu, Yiqi & Liu, Zhi & Wang, Li, 2018. "Estimation of spot volatility with superposed noisy data," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 62-79.
    17. José E. Figueroa-López & Cheng Li & Jeffrey Nisen, 2020. "Optimal iterative threshold-kernel estimation of jump diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 517-552, October.
    18. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    19. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
    20. Jos'e E. Figueroa-L'opez & Cheng Li & Jeffrey Nisen, 2018. "Optimal Iterative Threshold-Kernel Estimation of Jump Diffusion Processes," Papers 1811.07499, arXiv.org, revised Apr 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:163:y:2023:i:c:p:535-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.