IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v268y2021ics0277953620305773.html
   My bibliography  Save this article

Market characteristics and zoonotic disease risk perception in Cameroon bushmeat markets

Author

Listed:
  • Saylors, Karen E.
  • Mouiche, Moctar M.
  • Lucas, Ashley
  • McIver, David J.
  • Matsida, Annie
  • Clary, Catherine
  • Maptue, Victorine T.
  • Euren, Jason D.
  • LeBreton, Matthew
  • Tamoufe, Ubald

Abstract

Behavioral practices are one of the key factors facilitating zoonotic disease transmission, especially in individuals who have frequent contact with wild animals, yet practices of those who work and live in high-risk animal-human interfaces, such as wild animal ‘bushmeat’ markets in the Congo Basin are not well documented in the social, health and medical sciences. This region, where hunting, butchering, and consumption of wild animal meat is frequent, represents a hotspot for disease emergence, and has experienced zoonotic disease spillover events, traced back to close human-animal contact with bats and non-human primates. Using a One Health approach, we conducted wildlife surveillance, human behavioral research, and concurrent human and animal biological sampling to identify and characterize factors associated with zoonotic disease emergence and transmission. Research was conducted through the USAID Emerging Pandemic Threats program between 2010 and 2019 including qualitative studies of bushmeat markets, with selected study sites prioritized based on proximity to bushmeat markets. Sites included two hospitals where we conducted surveillance of individuals with syndromes of acute febrile illness, community sites where we enrolled actors of the animal value chain (ie. hunters, middlemen, transporters), and bushmeat markets, where we enrolled bushmeat vendors, butchers, market managers, cleaners, and shoppers. Mixed methods research was undertaken at these sites and included investigation of bushmeat market dynamics through observational research, focus group discussions, quantitative questionnaires, and interviews. Participants were asked about their risk perception of zoonotic disease transmission and specific activities related to bushmeat trade, local market conditions, and regulations on bushmeat trade in Cameroon. Risks associated with blood contact and animal infection were not well understood by most market actors. As bushmeat markets are an important disease interface, as seen with CoVID19, risk mitigation measures in markets and bushmeat alternative strategies are discussed.

Suggested Citation

  • Saylors, Karen E. & Mouiche, Moctar M. & Lucas, Ashley & McIver, David J. & Matsida, Annie & Clary, Catherine & Maptue, Victorine T. & Euren, Jason D. & LeBreton, Matthew & Tamoufe, Ubald, 2021. "Market characteristics and zoonotic disease risk perception in Cameroon bushmeat markets," Social Science & Medicine, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:socmed:v:268:y:2021:i:c:s0277953620305773
    DOI: 10.1016/j.socscimed.2020.113358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277953620305773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socscimed.2020.113358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    2. Bonwitt, Jesse & Dawson, Michael & Kandeh, Martin & Ansumana, Rashid & Sahr, Foday & Brown, Hannah & Kelly, Ann H., 2018. "Unintended consequences of the ‘bushmeat ban’ in West Africa during the 2013–2016 Ebola virus disease epidemic," Social Science & Medicine, Elsevier, vol. 200(C), pages 166-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enns, Charis & van Vliet, Nathalie & Mbane, Joseph & Muhindo, Jonas & Nyumu, Jonas & Bersaglio, Brock & Massé, Francis & Cerutti, Paolo Omar & Nasi, Robert, 2023. "Vulnerability and coping strategies within wild meat trade networks during the COVID-19 pandemic," World Development, Elsevier, vol. 170(C).
    2. Victor Narat & Maud Salmona & Mamadou Kampo & Thibaut Heyer & Abdeljalil Senhaji Rachik & Severine Mercier-Delarue & Noémie Ranger & Stephanie Rupp & Philippe Ambata & Richard Njouom & François Simon , 2023. "Higher convergence of human-great ape enteric eukaryotic viromes in central African forest than in a European zoo: a One Health analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Randolph, Shannon G. & Ingram, Daniel J. & Curran, Lisa M. & Holland Jones, James & Durham, William H., 2022. "Urban wild meat markets in Cameroon: Actors and motives," World Development, Elsevier, vol. 160(C).
    4. Ashley Lucas & Charles Kumakamba & Karen Saylors & Erby Obel & Reggiani Kamenga & Maria Makuwa & Catherine Clary & Guy Miningue & David J McIver & Christian E Lange & Placide Mbala Kingebeni & Jean J , 2022. "Risk perceptions and behaviors of actors in the wild animal value chain in Kinshasa, Democratic Republic of Congo," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolett Orosz & Tünde Tóthné Tóth & Gyöngyi Vargáné Gyuró & Zsoltné Tibor Nábrádi & Klára Hegedűsné Sorosi & Zsuzsa Nagy & Éva Rigó & Ádám Kaposi & Gabriella Gömöri & Cornelia Melinda Adi Santoso & A, 2022. "Comparison of Length of Hospital Stay for Community-Acquired Infections Due to Enteric Pathogens, Influenza Viruses and Multidrug-Resistant Bacteria: A Cross-Sectional Study in Hungary," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    2. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    3. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    4. Maxwell B Joseph & William E Stutz & Pieter T J Johnson, 2016. "Multilevel Models for the Distribution of Hosts and Symbionts," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    5. Laure Bonnaud & Nicolas Fortané, 2017. "Serge Morand and Muriel Figuié (eds), 2016, Emergence de maladies infectieuses. Risques et enjeux de société (The emergence of infectious diseases. Societal risks and stakes)," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 225-228, December.
    6. Chen, Xiaowei & Chong, Wing Fung & Feng, Runhuan & Zhang, Linfeng, 2021. "Pandemic risk management: Resources contingency planning and allocation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 359-383.
    7. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Ricardo Aguas & Neil M Ferguson, 2013. "Feature Selection Methods for Identifying Genetic Determinants of Host Species in RNA Viruses," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.
    9. Katarzyna Kubiak & Hanna Szymańska & Małgorzata Dmitryjuk & Ewa Dzika, 2022. "Abundance of Ixodes ricinus Ticks (Acari: Ixodidae) and the Diversity of Borrelia Species in Northeastern Poland," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    10. Luiza M Karpavicius & Ariaster Chimeli, 2023. "Forest Protection and Human Health: The Case of Malaria in the Brazilian Amazon," Working Papers, Department of Economics 2023_08, University of São Paulo (FEA-USP), revised 26 Jul 2023.
    11. Kranz, Johann & Zeiss, Roman & Beck, Roman & Gholami, Roya & Sarker, Saonee & Watson, Richard T. & Whitley, Edgar A., 2022. "Practicing what we preach? Reflections on more sustainable and responsible IS research and teaching practices," LSE Research Online Documents on Economics 116677, London School of Economics and Political Science, LSE Library.
    12. Acurio Vásconez, Verónica & Damette, Olivier & Shanafelt, David W., 2023. "Macroepidemics and unconventional monetary policy," Economic Modelling, Elsevier, vol. 126(C).
    13. Pawel Dlotko & Simon Rudkin, 2020. "Visualising the Evolution of English Covid-19 Cases with Topological Data Analysis Ball Mapper," Papers 2004.03282, arXiv.org, revised Apr 2020.
    14. Kow-Tong Chen, 2022. "Emerging Infectious Diseases and One Health: Implication for Public Health," IJERPH, MDPI, vol. 19(15), pages 1-4, July.
    15. Daniel H. Pope & Johan O. Karlsson & Phillip Baker & David McCoy, 2021. "Examining the Environmental Impacts of the Dairy and Baby Food Industries: Are First-Food Systems a Crucial Missing Part of the Healthy and Sustainable Food Systems Agenda Now Underway?," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    16. Zoltán Lakner & Brigitta Plasek & Anna Kiss & Sándor Soós & Ágoston Temesi, 2021. "Derailment or Turning Point? The Effect of the COVID-19 Pandemic on Sustainability-Related Thinking," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    17. Jie Li & Kun Jia & Yanxu Liu & Bo Yuan & Mu Xia & Wenwu Zhao, 2021. "Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the Environment," IJERPH, MDPI, vol. 18(1), pages 1-14, January.
    18. Peter Skewes-Cox & Thomas J Sharpton & Katherine S Pollard & Joseph L DeRisi, 2014. "Profile Hidden Markov Models for the Detection of Viruses within Metagenomic Sequence Data," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    19. Jose Maria Barrero & Nicholas Bloom & Steven J. Davis, 2020. "COVID-19 Is Also a Reallocation Shock," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 51(2 (Summer), pages 329-383.
    20. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:268:y:2021:i:c:s0277953620305773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.