IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v91y2022ics0739885921000019.html
   My bibliography  Save this article

CO2 Emission based prioritization of bridge maintenance projects using neutrosophic fuzzy sets based decision making approach

Author

Listed:
  • Gokasar, Ilgin
  • Deveci, Muhammet
  • Kalan, Onur

Abstract

Climate change is one of the most challenging problems for the world, which leads researchers to study on the decrease of its impact to the environment at several disciplines. One of the most adverse effects on environment can be observed in transportation area. Hence, in this paper, the impact of bridge maintenance on the environment is inquired in the bridge maintenance prioritization perspective. The aim of this paper is to rank the bridge maintenance projects using type-2 neutrosophic number (T2NN) based fuzzy WASPAS (Weighted Aggregated Sum Product Assessment) and TOPSIS (Technique For Order Preference By Similarity To An Ideal Solution) to test five alternative bridges, where a critical environmental criterion is introduced in this model, which addresses to additional CO2 emission because of truck detours in the event of a bridge closures. The applicability of the proposed model is demonstrated in a case study in Turkey. The evaluation findings show that the ranking results are robust and the CO2 emission criterion is found to be the dominant criterion in the multi-criteria decision-making model proposed in this paper.

Suggested Citation

  • Gokasar, Ilgin & Deveci, Muhammet & Kalan, Onur, 2022. "CO2 Emission based prioritization of bridge maintenance projects using neutrosophic fuzzy sets based decision making approach," Research in Transportation Economics, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:retrec:v:91:y:2022:i:c:s0739885921000019
    DOI: 10.1016/j.retrec.2021.101029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885921000019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2021.101029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    2. Harn Wei Kua, 2013. "The Consequences of Substituting Sand with Used Copper Slag in Construction," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 869-879, December.
    3. Harn Wei Kua & Marcus Maghimai, 2017. "Steel-versus-Concrete Debate Revisited: Global Warming Potential and Embodied Energy Analyses based on Attributional and Consequential Life Cycle Perspectives," Journal of Industrial Ecology, Yale University, vol. 21(1), pages 82-100, February.
    4. Supciller, Aliye Ayca & Toprak, Fatih, 2020. "Selection of wind turbines with multi-criteria decision making techniques involving neutrosophic numbers: A case from Turkey," Energy, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Kiani Sadr & Roghayeh Parchianloo & Sedighe Abdollahi & Hamta Golkarian, 2023. "Application of weighted aggregated sum product assessment and geographical information system for urban development zoning," Asia-Pacific Journal of Regional Science, Springer, vol. 7(3), pages 845-863, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    2. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2020. "Life-cycle approach to the estimation of energy efficiency measures in the buildings sector," Applied Energy, Elsevier, vol. 264(C).
    3. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    4. Baglivo, Cristina & Congedo, Paolo Maria, 2016. "High performance precast external walls for cold climate by a multi-criteria methodology," Energy, Elsevier, vol. 115(P1), pages 561-576.
    5. Baolong Liu & Jianxing Yu, 2022. "Dynamic Response of SPAR-Type Floating Offshore Wind Turbine under Wave Group Scenarios," Energies, MDPI, vol. 15(13), pages 1-18, July.
    6. Xueliang Yuan & Xiaoyu Zhang & Jiaxin Liang & Qingsong Wang & Jian Zuo, 2017. "The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    7. Mohammad Masfiqul Alam Bhuiyan & Ahmed Hammad, 2023. "A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction," Sustainability, MDPI, vol. 15(4), pages 1-36, February.
    8. Gallo, Michela & Del Borghi, Adriana & Strazza, Carlo & Parodi, Lara & Arcioni, Livia & Proietti, Stefania, 2016. "Opportunities and criticisms of voluntary emission reduction projects developed by Public Administrations: Analysis of 143 case studies implemented in Italy," Applied Energy, Elsevier, vol. 179(C), pages 1269-1282.
    9. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    10. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    11. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
    12. Kajetan Sadowski, 2021. "Implementation of the New European Bauhaus Principles as a Context for Teaching Sustainable Architecture," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    13. Atmaca, Adem & Atmaca, Nihat, 2016. "Comparative life cycle energy and cost analysis of post-disaster temporary housings," Applied Energy, Elsevier, vol. 171(C), pages 429-443.
    14. Yinan Li & Neng Zhu & Beibei Qin, 2019. "What Affects the Progress and Transformation of New Residential Building Energy Efficiency Promotion in China: Stakeholders’ Perceptions," Energies, MDPI, vol. 12(6), pages 1-41, March.
    15. Echarri-Iribarren, Victor & Echarri-Iribarren, Fernando & Rizo-Maestre, Carlos, 2019. "Ceramic panels versus aluminium in buildings: Energy consumption and environmental impact assessment with a new methodology," Applied Energy, Elsevier, vol. 233, pages 959-974.
    16. Nansheng Pang & Mengfan Nan & Qichen Meng & Siyang Zhao, 2021. "Selection of Wind Turbine Based on Fuzzy Analytic Network Process: A Case Study in China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    17. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Kong, Minjin & Hong, Taehoon & Ji, Changyoon & Kang, Hyuna & Lee, Minhyun, 2020. "Development of building driven-energy payback time for energy transition of building with renewable energy systems," Applied Energy, Elsevier, vol. 271(C).
    19. Didem Dizdaroglu, 2017. "The Role of Indicator-Based Sustainability Assessment in Policy and the Decision-Making Process: A Review and Outlook," Sustainability, MDPI, vol. 9(6), pages 1-28, June.
    20. He Wang & Yinqi Zhang & Weijun Gao & Soichiro Kuroki, 2020. "Life Cycle Environmental and Cost Performance of Prefabricated Buildings," Sustainability, MDPI, vol. 12(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:91:y:2022:i:c:s0739885921000019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.