IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v92y2018icp757-773.html
   My bibliography  Save this article

A review of the design aspects of ground heat exchangers

Author

Listed:
  • Aresti, Lazaros
  • Christodoulides, Paul
  • Florides, Georgios

Abstract

The advancement of technology and renewable energy systems (RES) have evolved considerably through the years. Geothermal energy was first introduced in Italy in 1904 and has ever since dramatically increased in efficiency. One of the main types of RES, Ground Source Heat Pumps (GSHPs), are used for heating and cooling a space when coupled with Ground Heat Exchangers (GHEs). GSHPs extract or reject heat to the Earth via a network of tubes. The closed loop system, either vertical or horizontal, is the most common of the configurations. Alternatively, pipes can run all the way down to utilize natural underground water sources, when present, in an open loop configuration. GHEs have significantly higher performance over conventional air-to-air heat exchanger systems and the reduction of their cost and the improvement of their overall efficiency through their design are crucial in research.

Suggested Citation

  • Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios, 2018. "A review of the design aspects of ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 757-773.
  • Handle: RePEc:eee:rensus:v:92:y:2018:i:c:p:757-773
    DOI: 10.1016/j.rser.2018.04.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118302727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.04.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    2. Davide Quaggiotto & Angelo Zarrella & Giuseppe Emmi & Michele De Carli & Luc Pockelé & Jacques Vercruysse & Mario Psyk & Davide Righini & Antonio Galgaro & Dimitrios Mendrinos & Adriana Bernardi, 2019. "Simulation-Based Comparison Between the Thermal Behavior of Coaxial and Double U-Tube Borehole Heat Exchangers," Energies, MDPI, vol. 12(12), pages 1-18, June.
    3. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    4. Mirzanamadi, Raheb & Hagentoft, Carl-Eric & Johansson, Pär, 2020. "Coupling a Hydronic Heating Pavement to a Horizontal Ground Heat Exchanger for harvesting solar energy and heating road surfaces," Renewable Energy, Elsevier, vol. 147(P1), pages 447-463.
    5. Angelo Zarrella & Roberto Zecchin & Philippe Pasquier & Diego Guzzon & Enrico Prataviera & Jacopo Vivian & Michele De Carli & Giuseppe Emmi, 2020. "Analysis of Retrofit Solutions of a Ground Source Heat Pump System: An Italian Case Study," Energies, MDPI, vol. 13(21), pages 1-19, October.
    6. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    7. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    8. Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.
    9. Moritani Shigeoki & Sasaki Kazuya & Itaka Kenji, 2020. "Development of low-cost evaluation method for coefficient of performance of heat pump for heating greenhouses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6877-6890, October.
    10. Magraner, Teresa & Montero, Álvaro & Cazorla-Marín, Antonio & Montagud-Montalvá, Carla & Martos, Julio, 2021. "Thermal response test analysis for U-pipe vertical borehole heat exchangers under groundwater flow conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 391-404.
    11. Aminhossein Jahanbin & Giovanni Semprini & Andrea Natale Impiombato & Cesare Biserni & Eugenia Rossi di Schio, 2020. "Effects of the Circuit Arrangement on the Thermal Performance of Double U-Tube Ground Heat Exchangers," Energies, MDPI, vol. 13(12), pages 1-19, June.
    12. Ioan Sarbu & Calin Sebarchievici, 2020. "Exploratory Research to Improve Energy-Efficiency of a Ground-Coupled Heat Pump Utilizing an Automatic Control Device of Circulation Pump Speed," Energies, MDPI, vol. 13(19), pages 1-19, September.
    13. Quirosa, Gonzalo & Torres, Miguel & Becerra, José A. & Jiménez-Espadafor, Francisco J. & Chacartegui, Ricardo, 2023. "Energy analysis of an ultra-low temperature district heating and cooling system with coaxial borehole heat exchangers," Energy, Elsevier, vol. 278(PA).
    14. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "Residential Buildings’ Foundations as a Ground Heat Exchanger and Comparison among Different Types in a Moderate Climate Country," Energies, MDPI, vol. 13(23), pages 1-22, November.
    15. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    16. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
    17. Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios A., 2021. "An investigation on the environmental impact of various Ground Heat Exchangers configurations," Renewable Energy, Elsevier, vol. 171(C), pages 592-605.
    18. Wu, Wentao & Zhang, Wei & Benner, Jingru & Malkawi, Ali, 2020. "Critical evaluation of analytical methods for thermally activated building systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    19. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    20. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    21. Tomislav Kurevija & Adib Kalantar & Marija Macenić & Josipa Hranić, 2019. "Investigation of Steady-State Heat Extraction Rates for Different Borehole Heat Exchanger Configurations from the Aspect of Implementation of New TurboCollector™ Pipe System Design," Energies, MDPI, vol. 12(8), pages 1-17, April.
    22. Eduardo de la Rocha Camba & Fontina Petrakopoulou, 2020. "Earth-Cooling Air Tunnels for Thermal Power Plants: Initial Design by CFD Modelling," Energies, MDPI, vol. 13(4), pages 1-19, February.
    23. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    24. Bottarelli, M. & Bortoloni, M. & Su, Y., 2019. "On the sizing of a novel Flat-Panel ground heat exchanger in coupling with a dual-source heat pump," Renewable Energy, Elsevier, vol. 142(C), pages 552-560.
    25. Muhammad Asad & Vincenzo Guida & Alessandro Mauro, 2023. "Experimental and Numerical Analysis of the Efficacy of a Real Downhole Heat Exchanger," Energies, MDPI, vol. 16(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:92:y:2018:i:c:p:757-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.