IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip1p1296-1328.html
   My bibliography  Save this article

State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics

Author

Listed:
  • Jakica, Nebojsa

Abstract

Solar design can take many different forms across disciplines with different methodologies and goals, ranging from acquiring architectural visual effects to assessing illumination for daylighting and solar radiation potential on building surfaces for PV implementation. Furthermore, a capability of solar design methodologies and tools to accurately and time efficiently simulate light phenomena can greatly influence performance results and design decisions. This is especially important in complex cases such as dense urban settings with the significant surface shadowing, and vertical facades including daylighting devices and photovoltaics. Consequently, choosing a suitable approach and tool for each design phase is essential for achieving unique design and performance goals. This paper was carried out within the framework of IEA-PVPS Task 15 – BIPV and it aims to facilitate this decision for all parties involved in solar design process. Here presented, is an overview of almost 200 solar design tools, analyzing their numerous features regarding accuracy, complexity, scale, computation speed, representation as well as building design process integration in about 50 2D/3D, CAD/CAM and BIM software environments. Furthermore, tools from various fields have been analysed in a broad interdisciplinary context of solar design with a particular attention for being used for Daylighting and Building-Integrated Photovoltaics (BIPV) purposes. This approach should open many new perspectives on a potentially wider multidisciplinary usage and interpretation of solar design tools, sometimes well beyond their initial scope of work.

Suggested Citation

  • Jakica, Nebojsa, 2018. "State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1296-1328.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:1296-1328
    DOI: 10.1016/j.rser.2017.05.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    2. Randall, J.F. & Jacot, J., 2003. "Is AM1.5 applicable in practice? Modelling eight photovoltaic materials with respect to light intensity and two spectra," Renewable Energy, Elsevier, vol. 28(12), pages 1851-1864.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyung-Woo Lee & Hyo-Mun Lee & Ru-Da Lee & Dong-Su Kim & Jong-Ho Yoon, 2021. "The Impact of Cracks in BIPV Modules on Power Outputs: A Case Study Based on Measured and Simulated Data," Energies, MDPI, vol. 14(4), pages 1-17, February.
    2. Flavio Rosa, 2020. "Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints," Energies, MDPI, vol. 13(14), pages 1-28, July.
    3. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    4. Freitas, Jader de Sousa & Cronemberger, Joára & Soares, Raí Mariano & Amorim, Cláudia Naves David, 2020. "Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug," Renewable Energy, Elsevier, vol. 160(C), pages 1468-1479.
    5. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    6. Krarti, Moncef, 2021. "Evaluation of PV integrated sliding-rotating overhangs for US apartment buildings," Applied Energy, Elsevier, vol. 293(C).
    7. Simon Ravyts & Mauricio Dalla Vecchia & Giel Van den Broeck & Johan Driesen, 2019. "Review on Building-Integrated Photovoltaics Electrical System Requirements and Module-Integrated Converter Recommendations," Energies, MDPI, vol. 12(8), pages 1-21, April.
    8. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    9. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    10. Krarti, Moncef, 2021. "Impact of PV integrated rotating overhangs for US residential buildings," Renewable Energy, Elsevier, vol. 174(C), pages 835-849.
    11. Korres, D.N. & Tzivanidis, C., 2019. "Numerical investigation and optimization of an experimentally analyzed solar CPC," Energy, Elsevier, vol. 172(C), pages 57-67.
    12. Aleksandra Besser & Jan K. Kazak & Małgorzata Świąder & Szymon Szewrański, 2019. "A Customized Decision Support System for Renewable Energy Application by Housing Association," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    13. Hasan, Javeriya & Horvat, Miljana, 2023. "Spatial parameters and methodological approaches in solar potential assessment - State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    15. Jack Ngarambe & Amina Irakoze & Geun Young Yun & Gon Kim, 2020. "Comparative Performance of Machine Learning Algorithms in the Prediction of Indoor Daylight Illuminances," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    16. Arias-Rosales, Andrés & LeDuc, Philip R., 2022. "Shadow modeling in urban environments for solar harvesting devices with freely defined positions and orientations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. de Jesus, Ábio Xavier Cardoso & Pinheiro Neto, Daywes & Domingues, Elder Geraldo, 2023. "Computational tool for technical-economic analysis of photovoltaic microgeneration in Brazil," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    2. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    3. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    5. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    6. Fuster-Palop, Enrique & Prades-Gil, Carlos & Masip, X. & Viana-Fons, Joan D. & Payá, Jorge, 2021. "Innovative regression-based methodology to assess the techno-economic performance of photovoltaic installations in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    8. Mendis, Thushini & Huang, Zhaojian & Xu, Shen & Zhang, Weirong, 2020. "Economic potential analysis of photovoltaic integrated shading strategies on commercial building facades in urban blocks: A case study of Colombo, Sri Lanka," Energy, Elsevier, vol. 194(C).
    9. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    10. Yang, Chen & Xue, RuiPu & Li, Xu & Zhang, XiaoQing & Wu, ZhenYu, 2020. "Power performance of solar energy harvesting system under typical indoor light sources," Renewable Energy, Elsevier, vol. 161(C), pages 836-845.
    11. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    12. Reich, N.H. & van Sark, W.G.J.H.M. & Turkenburg, W.C., 2011. "Charge yield potential of indoor-operated solar cells incorporated into Product Integrated Photovoltaic (PIPV)," Renewable Energy, Elsevier, vol. 36(2), pages 642-647.
    13. Russo, Johnny & Ray, William & Litz, Marc S., 2017. "Low light illumination study on commercially available homojunction photovoltaic cells," Applied Energy, Elsevier, vol. 191(C), pages 10-21.
    14. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
    15. Miguel Amado & Francesca Poggi & António Ribeiro Amado & Sílvia Breu, 2018. "E-City Web Platform: A Tool for Energy Efficiency at Urban Level," Energies, MDPI, vol. 11(7), pages 1-14, July.
    16. Matteo Formolli & Gabriele Lobaccaro & Jouri Kanters, 2021. "Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers," Energies, MDPI, vol. 14(24), pages 1-18, December.
    17. Sánchez-Aparicio, M. & Martín-Jiménez, J. & Del Pozo, S. & González-González, E. & Lagüela, S., 2021. "Ener3DMap-SolarWeb roofs: A geospatial web-based platform to compute photovoltaic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Thai, Clinton & Brouwer, Jack, 2021. "Challenges estimating distributed solar potential with utilization factors: California universities case study," Applied Energy, Elsevier, vol. 282(PB).
    19. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    20. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:1296-1328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.