IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v76y2017icp226-255.html
   My bibliography  Save this article

Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance

Author

Listed:
  • Suganthi, K.S.
  • Rajan, K.S.

Abstract

Nanofluids, engineered colloidal dispersions of solid nanoparticles in liquid, belong to new category of heat transfer fluids that have evinced intense research activities in the recent past. Metal oxides have been widely used as solid phase for nanofluid formulation owing to their advantages such as relatively lower density, chemical stability and ease of preparation. This review paper resumes the research carried out on metal oxide based nanofluids: preparation, thermo-physical properties, the molecular level mechanisms influencing the transport properties and the testing of nanofluids for cooling applications. The influence of nanofluid formulation and physical parameters such as nanomaterial morphology, temperature, pH, additives, and the viscosity of base fluid on the transport properties of nanofluids has been reviewed. The physico-chemical interactions between the metal oxide nanoparticles and the molecules of the base fluid play an important role in determining the thermal conductivity and viscosity of the colloidal dispersions. Hence, desirable thermo-physical properties of nanofluids can be achieved by engineering the interactions between the metal oxide nanoparticles and the base fluid molecules by adopting appropriate formulation strategy. Scale-up of preparation of nanofluids is still a challenge and needs to be addressed, upon which the use of nanofluids as heat transfer fluids in solar thermal applications, industrial cooling, thermal management in fuel cells, etc. can be accomplished.

Suggested Citation

  • Suganthi, K.S. & Rajan, K.S., 2017. "Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 226-255.
  • Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:226-255
    DOI: 10.1016/j.rser.2017.03.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117303714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.03.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leong, K.Y. & Ong, Hwai Chyuan & Amer, N.H. & Norazrina, M.J. & Risby, M.S. & Ku Ahmad, K.Z., 2016. "An overview on current application of nanofluids in solar thermal collector and its challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1092-1105.
    2. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    3. Sharma, Anuj Kumar & Tiwari, Arun Kumar & Dixit, Amit Rai, 2016. "Rheological behaviour of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 779-791.
    4. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    5. Yiamsawas, Thaklaew & Mahian, Omid & Dalkilic, Ahmet Selim & Kaewnai, Suthep & Wongwises, Somchai, 2013. "Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications," Applied Energy, Elsevier, vol. 111(C), pages 40-45.
    6. Muhammad, Mahmud Jamil & Muhammad, Isa Adamu & Sidik, Nor Azwadi Che & Yazid, Muhammad Noor Afiq Witri Muhammad & Mamat, Rizalman & Najafi, G., 2016. "The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 226-236.
    7. Colangelo, Gianpiero & Favale, Ernani & de Risi, Arturo & Laforgia, Domenico, 2012. "Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications," Applied Energy, Elsevier, vol. 97(C), pages 828-833.
    8. Kasaeian, Alibakhsh & Eshghi, Amin Toghi & Sameti, Mohammad, 2015. "A review on the applications of nanofluids in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 584-598.
    9. Raja, M. & Vijayan, R. & Dineshkumar, P. & Venkatesan, M., 2016. "Review on nanofluids characterization, heat transfer characteristics and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 163-173.
    10. Suganthi, K.S. & Leela Vinodhan, V. & Rajan, K.S., 2014. "Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants," Applied Energy, Elsevier, vol. 135(C), pages 548-559.
    11. Sundar, L. Syam & Sharma, K.V. & Naik, M.T. & Singh, Manoj K., 2013. "Empirical and theoretical correlations on viscosity of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 670-686.
    12. Arthur, Owen & Karim, M.A., 2016. "An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 739-755.
    13. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    14. Azmi, W.H. & Sharma, K.V. & Mamat, Rizalman & Najafi, G. & Mohamad, M.S., 2016. "The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1046-1058.
    15. Manikandan, S. & Rajan, K.S., 2015. "MgO-Therminol 55 nanofluids for efficient energy management: Analysis of transient heat transfer performance," Energy, Elsevier, vol. 88(C), pages 408-416.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1, March.
    2. Chandran, M. Neelesh & Manikandan, S. & Suganthi, K.S. & Rajan, K.S., 2017. "Novel hybrid nanofluid with tunable specific heat and thermal conductivity: Characterization and performance assessment for energy related applications," Energy, Elsevier, vol. 140(P1), pages 27-39.
    3. Marina Tselepi & Costas Prouskas & Dimitrios G. Papageorgiou & Isaac. E. Lagaris & Georgios A. Evangelakis, 2022. "Graphene-Based Phase Change Composite Nano-Materials for Thermal Storage Applications," Energies, MDPI, vol. 15(3), pages 1-12, February.
    4. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    5. Pinar Eneren & Yunus Tansu Aksoy & Maria Rosaria Vetrano, 2022. "Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review," Energies, MDPI, vol. 15(7), pages 1-21, March.
    6. Sheng, Haoqiang & Huang, Xiaobin & Hu, Wenbin & Ji, Yuan & Chen, Junming & Xie, Mingyun & He, Miaoshen & Zhang, Bo & Liu, Hong, 2023. "Stability and combustion performance enhancement of ethanol/kerosene fuel by carbonized poly[cyclotriphosphazene-co-(4,4′-sulfonyldiphenol)] nanotubes via biomimetic hydrogen bonding strategy," Energy, Elsevier, vol. 282(C).
    7. Li, Haoran & He, Yurong & Wang, Changhong & Wang, Xinzhi & Hu, Yanwei, 2019. "Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications," Applied Energy, Elsevier, vol. 236(C), pages 117-126.
    8. Mohamed Iqbal Shajahan & Jee Joe Michael & M. Arulprakasajothi & Sivan Suresh & Emad Abouel Nasr & H. M. A. Hussein, 2020. "Effect of Conical Strip Inserts and ZrO 2 /DI-Water Nanofluid on Heat Transfer Augmentation: An Experimental Study," Energies, MDPI, vol. 13(17), pages 1-24, September.
    9. Muzamil Hussain & Syed Khawar Hussain Shah & Uzair Sajjad & Naseem Abbas & Ahsan Ali, 2022. "Recent Developments in Optical and Thermal Performance of Direct Absorption Solar Collectors," Energies, MDPI, vol. 15(19), pages 1-23, September.
    10. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    2. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    3. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    4. Chandran, M. Neelesh & Manikandan, S. & Suganthi, K.S. & Rajan, K.S., 2017. "Novel hybrid nanofluid with tunable specific heat and thermal conductivity: Characterization and performance assessment for energy related applications," Energy, Elsevier, vol. 140(P1), pages 27-39.
    5. Zeiny, Aimen & Jin, Haichuan & Lin, Guiping & Song, Pengxiang & Wen, Dongsheng, 2018. "Solar evaporation via nanofluids: A comparative study," Renewable Energy, Elsevier, vol. 122(C), pages 443-454.
    6. Minea, Alina Adriana, 2017. "Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 426-434.
    7. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    8. Murshed, S.M. Sohel & Nieto de Castro, C.A., 2016. "Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids – A review," Applied Energy, Elsevier, vol. 184(C), pages 681-695.
    9. Hemmati-Sarapardeh, Abdolhossein & Varamesh, Amir & Husein, Maen M. & Karan, Kunal, 2018. "On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 313-329.
    10. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    11. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    12. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
    14. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 10-32.
    15. Murshed, S.M. Sohel & Estellé, Patrice, 2017. "A state of the art review on viscosity of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1134-1152.
    16. Sani, Elisa & Papi, Nicolò & Mercatelli, Luca & Żyła, Gaweł, 2018. "Graphite/diamond ethylene glycol-nanofluids for solar energy applications," Renewable Energy, Elsevier, vol. 126(C), pages 692-698.
    17. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    18. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    19. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).
    20. Mahbubul, I.M. & Khan, Mohammed Mumtaz A. & Ibrahim, Nasiru I. & Ali, Hafiz Muhammad & Al-Sulaiman, Fahad A. & Saidur, R., 2018. "Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector," Renewable Energy, Elsevier, vol. 121(C), pages 36-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:226-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.