IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v74y2017icp1080-1107.html
   My bibliography  Save this article

Genome engineering for breaking barriers in lignocellulosic bioethanol production

Author

Listed:
  • Ulaganathan, Kandasamy
  • Goud, Sravanthi
  • Reddy, Madhavi
  • Kayalvili, Ulaganathan

Abstract

Lignocellulosic biomass, though available in massive volumes, is not used for production of bioethanol due to existence of several barriers which escalate the cost of production. Microorganisms possess different proteins associated with different stages of lignocellulosic bioethanol production. Though a large number of such proteins have been identified, their specificities and expression levels are not suitable for lignocellulosic bioethanol production. Additionally, the host organism used for bioethanol production may not be tolerant to temperature, pH and ethanol stresses. Hence, the host organisms and the proteins used for bioethanol production needs to be engineered to suit the conditions for ethanol production. Engineering the host strain and altering specificities of proteins employed for bioethanol production can be achieved by genetic engineering techniques, where the gene of interest is isolated first, manipulated in vitro and introduced back into the host organism. Recently, a number of precision genome engineering techniques have been developed which facilitate modification of genes / genomic regions directly in the organism of interest without the need for isolating the genes/genomic regions. These techniques include (a). The bacterial immunity based CRISPR/Cas system, (b). Xanthomonas transcription-activator-like effector nuclease based TALEN system, (c). Zinc finger domain based ZFN system, (d). Long region recognizing-nuclease based meganuclease system and (e). Oligonucleotide based YOGE system. Protein engineering studies and whole genome sequencing of bioethanol producing strains have shown that alteration of one or more nucleotides can bring out large changes that facilitate increased production of cellulosic bioethanol. These precision engineering techniques can supplement genetic engineering to bring out alteration in specificities of enzymes and change the host's tolerance to various stress levels by specific alteration of genomic regions. In this review, various methods of genome engineering available and their possible application for breaking barriers in lignocellulosic bioethanol production are discussed.

Suggested Citation

  • Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
  • Handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:1080-1107
    DOI: 10.1016/j.rser.2017.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harris H. Wang & Farren J. Isaacs & Peter A. Carr & Zachary Z. Sun & George Xu & Craig R. Forest & George M. Church, 2009. "Programming cells by multiplex genome engineering and accelerated evolution," Nature, Nature, vol. 460(7257), pages 894-898, August.
    2. Marine Beurdeley & Fabian Bietz & Jin Li & Severine Thomas & Thomas Stoddard & Alexandre Juillerat & Feng Zhang & Daniel F. Voytas & Philippe Duchateau & George H. Silva, 2013. "Compact designer TALENs for efficient genome engineering," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    3. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    4. Nicholas D. Bonawitz & Jeong Im Kim & Yuki Tobimatsu & Peter N. Ciesielski & Nickolas A. Anderson & Eduardo Ximenes & Junko Maeda & John Ralph & Bryon S. Donohoe & Michael Ladisch & Clint Chapple, 2014. "Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant," Nature, Nature, vol. 509(7500), pages 376-380, May.
    5. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6813), pages 750-750, December.
    6. Yuanheng Cai & Kewei Zhang & Hoon Kim & Guichuan Hou & Xuebin Zhang & Huijun Yang & Huan Feng & Lisa Miller & John Ralph & Chang-Jun Liu, 2016. "Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
    7. Victoria M. Bedell & Ying Wang & Jarryd M. Campbell & Tanya L. Poshusta & Colby G. Starker & Randall G. Krug II & Wenfang Tan & Sumedha G. Penheiter & Alvin C. Ma & Anskar Y. H. Leung & Scott C. Fahre, 2012. "In vivo genome editing using a high-efficiency TALEN system," Nature, Nature, vol. 491(7422), pages 114-118, November.
    8. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    9. Fyodor D. Urnov & Jeffrey C. Miller & Ya-Li Lee & Christian M. Beausejour & Jeremy M. Rock & Sheldon Augustus & Andrew C. Jamieson & Matthew H. Porteus & Philip D. Gregory & Michael C. Holmes, 2005. "Highly efficient endogenous human gene correction using designed zinc-finger nucleases," Nature, Nature, vol. 435(7042), pages 646-651, June.
    10. Vipula K. Shukla & Yannick Doyon & Jeffrey C. Miller & Russell C. DeKelver & Erica A. Moehle & Sarah E. Worden & Jon C. Mitchell & Nicole L. Arnold & Sunita Gopalan & Xiangdong Meng & Vivian M. Choi &, 2009. "Precise genome modification in the crop species Zea mays using zinc-finger nucleases," Nature, Nature, vol. 459(7245), pages 437-441, May.
    11. Tsang, Eric W. K., 2014. "Old and New," Management and Organization Review, Cambridge University Press, vol. 10(03), pages 390-390, November.
    12. Elitza Deltcheva & Krzysztof Chylinski & Cynthia M. Sharma & Karine Gonzales & Yanjie Chao & Zaid A. Pirzada & Maria R. Eckert & Jörg Vogel & Emmanuelle Charpentier, 2011. "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III," Nature, Nature, vol. 471(7340), pages 602-607, March.
    13. Matthew J. Neale & Jing Pan & Scott Keeney, 2005. "Endonucleolytic processing of covalent protein-linked DNA double-strand breaks," Nature, Nature, vol. 436(7053), pages 1053-1057, August.
    14. Blake Wiedenheft & Samuel H. Sternberg & Jennifer A. Doudna, 2012. "RNA-guided genetic silencing systems in bacteria and archaea," Nature, Nature, vol. 482(7385), pages 331-338, February.
    15. Justin Ashworth & James J. Havranek & Carlos M. Duarte & Django Sussman & Raymond J. Monnat & Barry L. Stoddard & David Baker, 2006. "Computational redesign of endonuclease DNA binding and cleavage specificity," Nature, Nature, vol. 441(7093), pages 656-659, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jiangfeng & Khan, Muhammad Tahir & Perecin, Danilo & Coelho, Suani T. & Zhang, Muqing, 2020. "Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    2. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    3. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    4. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    5. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    6. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    7. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    8. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    9. Kim, Hyeyoung & House, Lisa A. & KIm, Tae-Kyun, 2016. "Consumer perceptions of climate change and willingness to pay for mandatory implementation of low carbon labels: the case of South Korea," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(4), October.
    10. Guoju, Xiao & Weixiang, Liu & Qiang, Xu & Zhaojun, Sun & Jing, Wang, 2005. "Effects of temperature increase and elevated CO2 concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 74(3), pages 243-255, June.
    11. Sogol Moradian & Farhad Yazdandoost, 2021. "Seasonal meteorological drought projections over Iran using the NMME data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1089-1107, August.
    12. Viola, Flavio M. & Paiva, Susana L.D. & Savi, Marcelo A., 2010. "Analysis of the global warming dynamics from temperature time series," Ecological Modelling, Elsevier, vol. 221(16), pages 1964-1978.
    13. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    14. Marc Kennedy & Clive Anderson & Anthony O'Hagan & Mark Lomas & Ian Woodward & John Paul Gosling & Andreas Heinemeyer, 2008. "Quantifying uncertainty in the biospheric carbon flux for England and Wales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 109-135, January.
    15. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    16. Sara J. Germain & James A. Lutz, 2020. "Climate extremes may be more important than climate means when predicting species range shifts," Climatic Change, Springer, vol. 163(1), pages 579-598, November.
    17. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.
    18. Wang, Tao & Yu, Wei & Le Moullec, Yann & Liu, Fei & Xiong, Yili & He, Hui & Lu, Jiahui & Hsu, Emily & Fang, Mengxiang & Luo, Zhongyang, 2017. "Solvent regeneration by novel direct non-aqueous gas stripping process for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 205(C), pages 23-32.
    19. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    20. U. Persson & Christian Azar, 2007. "Tropical deforestation in a future international climate policy regime—lessons from the Brazilian Amazon," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(7), pages 1277-1304, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:1080-1107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.