IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v65y2016icp662-675.html
   My bibliography  Save this article

Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis

Author

Listed:
  • Fakorede, Oloufemi
  • Feger, Zoé
  • Ibrahim, Hussein
  • Ilinca, Adrian
  • Perron, Jean
  • Masson, Christian

Abstract

The impact of icing on wind turbines and energy production in northern regions is a severe problem. Therefore, emphasis on developing ice mitigation systems has become a significant part of the wind energy conversion systems. These systems use various technologies and have different specifications, sometimes with no clear indication of their efficiency. Since the effect of cold climate on wind turbines is complex, not every ice protection system is suitable for a given wind farm. Therefore, the aim of this work is to compare the existing ice mitigation solutions and provide an indication on their efficiency. In this paper, we first review the most recent standards set by experts, and the major issues associated with wind energy in cold climates. Then, we present the ice protection techniques found in the literature, and then highlight the recent research on the optimization of the systems. Finally, we present an analysis of the current market, compare ice protection techniques and systems, based on various criteria, and measure the additional costs generated by ice mitigation.

Suggested Citation

  • Fakorede, Oloufemi & Feger, Zoé & Ibrahim, Hussein & Ilinca, Adrian & Perron, Jean & Masson, Christian, 2016. "Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 662-675.
  • Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:662-675
    DOI: 10.1016/j.rser.2016.06.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.06.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sagol, Ece & Reggio, Marcelo & Ilinca, Adrian, 2013. "Issues concerning roughness on wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 514-525.
    2. Dalili, N. & Edrisy, A. & Carriveau, R., 2009. "A review of surface engineering issues critical to wind turbine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 428-438, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Swenson, Lauren & Gao, Linyue & Hong, Jiarong & Shen, Lian, 2022. "An efficacious model for predicting icing-induced energy loss for wind turbines," Applied Energy, Elsevier, vol. 305(C).
    2. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
    3. Gao, Linyue & Liu, Yang & Ma, Liqun & Hu, Hui, 2019. "A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 140(C), pages 943-956.
    4. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    5. Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
    6. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    7. Yang Zhao & Xi Wang & Qibin Zhou & Zhenxing Wang & Xiaoyan Bian, 2020. "Numerical Study of Lightning Protection of Wind Turbine Blade with De-Icing Electrical Heating System," Energies, MDPI, vol. 13(3), pages 1-11, February.
    8. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    9. Sima Rastayesh & Lijia Long & John Dalsgaard Sørensen & Sebastian Thöns, 2019. "Risk Assessment and Value of Action Analysis for Icing Conditions of Wind Turbines Close to Highways," Energies, MDPI, vol. 12(14), pages 1-15, July.
    10. Fahed Martini & Leidy Tatiana Contreras Montoya & Adrian Ilinca, 2021. "Review of Wind Turbine Icing Modelling Approaches," Energies, MDPI, vol. 14(16), pages 1-26, August.
    11. Xiao Wang & Zheng Zheng & Guoqian Jiang & Qun He & Ping Xie, 2022. "Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network," Energies, MDPI, vol. 15(8), pages 1-19, April.
    12. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Muchen & Xiao, Zhixiang, 2019. "Distributed roughness induced transition on wind-turbine airfoils simulated by four-equation k-ω-γ-Ar transition model," Renewable Energy, Elsevier, vol. 135(C), pages 1166-1177.
    2. Melo Junior, Francisco Erivan de Abreu & de Moura, Elineudo Pinho & Costa Rocha, Paulo Alexandre & de Andrade, Carla Freitas, 2019. "Unbalance evaluation of a scaled wind turbine under different rotational regimes via detrended fluctuation analysis of vibration signals combined with pattern recognition techniques," Energy, Elsevier, vol. 171(C), pages 556-565.
    3. de Oliveira Nogueira, Tiago & Palacio, Gilderlânio Barbosa Alves & Braga, Fabrício Damasceno & Maia, Pedro Paulo Nunes & de Moura, Elineudo Pinho & de Andrade, Carla Freitas & Rocha, Paulo Alexandre C, 2022. "Imbalance classification in a scaled-down wind turbine using radial basis function kernel and support vector machines," Energy, Elsevier, vol. 238(PC).
    4. Dollinger, Christoph & Balaresque, Nicholas & Gaudern, Nicholas & Gleichauf, Daniel & Sorg, Michael & Fischer, Andreas, 2019. "IR thermographic flow visualization for the quantification of boundary layer flow disturbances due to the leading edge condition," Renewable Energy, Elsevier, vol. 138(C), pages 709-721.
    5. Mohammad Hassan Khanjanpour & Akbar A. Javadi, 2020. "Experimental and CFD Analysis of Impact of Surface Roughness on Hydrodynamic Performance of a Darrieus Hydro (DH) Turbine," Energies, MDPI, vol. 13(4), pages 1-18, February.
    6. Liu, W.Y. & Zhang, W.H. & Han, J.G. & Wang, G.F., 2012. "A new wind turbine fault diagnosis method based on the local mean decomposition," Renewable Energy, Elsevier, vol. 48(C), pages 411-415.
    7. Tang, Baoping & Liu, Wenyi & Song, Tao, 2010. "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution," Renewable Energy, Elsevier, vol. 35(12), pages 2862-2866.
    8. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    9. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    10. Son, Chankyu & Kelly, Mark & Kim, Taeseong, 2021. "Boundary-layer transition model for icing simulations of rotating wind turbine blades," Renewable Energy, Elsevier, vol. 167(C), pages 172-183.
    11. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    12. Yan Li & He Shen & Wenfeng Guo, 2021. "Simulation and Experimental Study on the Ultrasonic Micro-Vibration De-Icing Method for Wind Turbine Blades," Energies, MDPI, vol. 14(24), pages 1-15, December.
    13. Zhao, Zhen-yu & Ling, Wen-jun & Zillante, George & Zuo, Jian, 2012. "Comparative assessment of performance of foreign and local wind turbine manufacturers in China," Renewable Energy, Elsevier, vol. 39(1), pages 424-432.
    14. Alessio Castorrini & Paolo Venturini & Aldo Bonfiglioli, 2022. "Generation of Surface Maps of Erosion Resistance for Wind Turbine Blades under Rain Flows," Energies, MDPI, vol. 15(15), pages 1-14, August.
    15. Gao, Linyue & Liu, Yang & Zhou, Wenwu & Hu, Hui, 2019. "An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process," Renewable Energy, Elsevier, vol. 133(C), pages 663-675.
    16. Eleni Douvi & Dimitra Douvi, 2023. "Aerodynamic Characteristics of Wind Turbines Operating under Hazard Environmental Conditions: A Review," Energies, MDPI, vol. 16(22), pages 1-43, November.
    17. Herring, Robbie & Dyer, Kirsten & Martin, Ffion & Ward, Carwyn, 2019. "The increasing importance of leading edge erosion and a review of existing protection solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Tarroja, Brian & Mueller, Fabian & Eichman, Joshua D. & Brouwer, Jack & Samuelsen, Scott, 2011. "Spatial and temporal analysis of electric wind generation intermittency and dynamics," Renewable Energy, Elsevier, vol. 36(12), pages 3424-3432.
    19. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    20. Han, Woobeom & Kim, Jonghwa & Kim, Bumsuk, 2018. "Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 817-823.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:662-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.