IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v65y2016icp1247-1266.html
   My bibliography  Save this article

Biomass applications in iron and steel industry: An overview of challenges and opportunities

Author

Listed:
  • Mousa, Elsayed
  • Wang, Chuan
  • Riesbeck, Johan
  • Larsson, Mikael

Abstract

The iron and steel industry accounts for about 20% of the annual industrial energy utilization. The intensive fossil fuel consumption in steel industry is associated with CO2 emission. In the absence of economically feasible and efficient methods for capture and storage of enormous quantities of CO2 emissions from steel industry, the use of biomass products as a source of energy and reducing agents provides a promising alternative solution for green steel production. However, the biomass application in iron and steel industry is still limited and it suffers strong competition from fossil fuels. The challenges of biomass usage in steel industry are included technical and economic aspects which required synergy between steelmaking and bioenergy sectors. Although intensive work has been carried out separately, there is a lack of link between these two vital sectors. The present article provides a comprehensive review of recent research progresses which have been conducted on biomass upgrading and analysing the opportunities and obstacles for biomass implementation in iron and steel industry. In the first part, an overview on the energy consumption and CO2 emissions in different iron and steelmaking routes is clarified. Moreover, the potential approaches of biomass conversion processes and upgrading technologies are reviewed. In the second part, an attention has been paid to the utilization of torrefied/pyrolyzed biomass in the energy-intensive ironmaking processes. Biomass addition to coal blend during cokemaking and its influence on the product coke quality is discussed. The partial and complete substitution of coke breeze with biochar in sintering process and its influence on the product sinter quality is explained. The impact of charcoal top charging or injection into blast furnace has been elaborated. Benefits and limitations of biomass application in each process are thoroughly discussed. In the third part, an economic analysis of biomass implementation for low-carbon steel is addressed.

Suggested Citation

  • Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
  • Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:1247-1266
    DOI: 10.1016/j.rser.2016.07.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.07.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    2. Strezov, Vladimir, 2006. "Iron ore reduction using sawdust: Experimental analysis and kinetic modelling," Renewable Energy, Elsevier, vol. 31(12), pages 1892-1905.
    3. Hannu Suopajärvi & Timo Fabritius, 2013. "Towards More Sustainable Ironmaking—An Analysis of Energy Wood Availability in Finland and the Economics of Charcoal Production," Sustainability, MDPI, vol. 5(3), pages 1-20, March.
    4. Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
    5. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    6. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    7. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    3. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2014. "Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost," Applied Energy, Elsevier, vol. 124(C), pages 82-93.
    4. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    5. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    6. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    7. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    8. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    9. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    10. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Hosseinzadeh, Mehdi & Yousefi, Hossein & Khorasani, Sasan Torabzadeh, 2018. "Optimal management of energy hubs and smart energy hubs – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 33-50.
    11. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    12. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Trishan Deb Abhi & Omid Norouzi & Kevin Macdermid-Watts & Mohammad Heidari & Syeda Tasnim & Animesh Dutta, 2021. "Miscanthus to Biocarbon for Canadian Iron and Steel Industries: An Innovative Approach," Energies, MDPI, vol. 14(15), pages 1-18, July.
    14. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
    15. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    16. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    17. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    18. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    19. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    20. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:1247-1266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.