IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v61y2016icp70-85.html
   My bibliography  Save this article

Energy efficiency and thermal comfort in historic buildings: A review

Author

Listed:
  • Martínez-Molina, Antonio
  • Tort-Ausina, Isabel
  • Cho, Soolyeon
  • Vivancos, José-Luis

Abstract

In recent years, energy efficiency and thermal comfort in historic buildings have become high-interest topics among scholars. Research has demonstrated that retrofitting buildings to current energy efficiency and thermal comfort standards is essential for improving sustainability and energy performance and for maintaining built heritage of historic structures. This study is an extensive overview of the literature surrounding this topic. This paper summarizes the different methods and techniques that have been used around the world to achieve performance refurbishments. Articles are organized based on the different building types used as case studies (residential, religious, academic and palace, museums, libraries and theaters, urban areas, and others). The results reveal that residential, religious and museum building types, especially from the last two centuries, have been most often used as case studies. Moreover, Europe, particularly Italy, is leading the research. The aim of this note is to demonstrate the feasibility of maintaining built heritage values of historic buildings while achieving significant improvements in their energy efficiency and thermal comfort.

Suggested Citation

  • Martínez-Molina, Antonio & Tort-Ausina, Isabel & Cho, Soolyeon & Vivancos, José-Luis, 2016. "Energy efficiency and thermal comfort in historic buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 70-85.
  • Handle: RePEc:eee:rensus:v:61:y:2016:i:c:p:70-85
    DOI: 10.1016/j.rser.2016.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116002537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krarti, Moncef, 2015. "Evaluation of large scale building energy efficiency retrofit program in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1069-1080.
    2. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    3. Arumägi, Endrik & Kalamees, Targo, 2014. "Analysis of energy economic renovation for historic wooden apartment buildings in cold climates," Applied Energy, Elsevier, vol. 115(C), pages 540-548.
    4. Tassiopoulou, T. & Grindley, P. C. & Probert, S. D., 1996. "Thermal behaviour of an eighteenth-century Athenian dwelling," Applied Energy, Elsevier, vol. 53(4), pages 383-398, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    2. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
    4. Anti Hamburg & Targo Kalamees, 2018. "The Influence of Energy Renovation on the Change of Indoor Temperature and Energy Use," Energies, MDPI, vol. 11(11), pages 1-15, November.
    5. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    6. Vítor JPD Martinho, 2018. "A transversal perspective on global energy production and consumption: An approach based on convergence theory," Energy & Environment, , vol. 29(4), pages 556-575, June.
    7. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    8. Ganjehkaviri, A. & Mohd Jaafar, M.N. & Hosseini, S.E. & Barzegaravval, H., 2017. "Genetic algorithm for optimization of energy systems: Solution uniqueness, accuracy, Pareto convergence and dimension reduction," Energy, Elsevier, vol. 119(C), pages 167-177.
    9. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    10. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Qu, Ke & Chen, Xiangjie & Wang, Yixin & Calautit, John & Riffat, Saffa & Cui, Xin, 2021. "Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings - A case study of a late nineteenth-century Victorian house renovation in the UK," Energy, Elsevier, vol. 220(C).
    12. Miriam Berretta & Joshua Furgeson & Yue (Nicole) Wu & Collins Zamawe & Ian Hamilton & John Eyers, 2021. "Residential energy efficiency interventions: A meta‐analysis of effectiveness studies," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    13. Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
    14. Azar, Elie & Alaifan, Bader & Lin, Min & Trepci, Esra & El Asmar, Mounir, 2021. "Drivers of energy consumption in Kuwaiti buildings: Insights from a hybrid statistical and building performance simulation approach," Energy Policy, Elsevier, vol. 150(C).
    15. Nikolaos Ziozas & Angeliki Kitsopoulou & Evangelos Bellos & Petros Iliadis & Dimitra Gonidaki & Komninos Angelakoglou & Nikolaos Nikolopoulos & Silvia Ricciuti & Diego Viesi, 2024. "Energy Performance Analysis of the Renovation Process in an Italian Cultural Heritage Building," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    16. Zeng, Chunlei & Wu, Changchun & Zuo, Lili & Zhang, Bin & Hu, Xingqiao, 2014. "Predicting energy consumption of multiproduct pipeline using artificial neural networks," Energy, Elsevier, vol. 66(C), pages 791-798.
    17. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    18. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    19. Hu, Yuan & Peng, Ling & Li, Xiang & Yao, Xiaojing & Lin, Hui & Chi, Tianhe, 2018. "A novel evolution tree for analyzing the global energy consumption structure," Energy, Elsevier, vol. 147(C), pages 1177-1187.
    20. Fuerst, Franz & Oikarinen, Elias & Harjunen, Oskari, 2016. "Green signalling effects in the market for energy-efficient residential buildings," Applied Energy, Elsevier, vol. 180(C), pages 560-571.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:61:y:2016:i:c:p:70-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.