IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp615-630.html
   My bibliography  Save this article

A knowledge discovery in databases approach for industrial microgrid planning

Author

Listed:
  • Gamarra, Carlos
  • Guerrero, Josep M.
  • Montero, Eduardo

Abstract

The progressive application of Information and Communication Technologies to industrial processes has increased the amount of data gathered by manufacturing companies during last decades. Nowadays some standardized management systems, such as ISO 50.001 and ISO 14.001, exploit these data in order to minimize the environmental impact of manufacturing processes. At the same time, microgrid architectures are progressively being developed, proving to be suitable for supplying energy to continuous and intensive consumptions, such as manufacturing processes.

Suggested Citation

  • Gamarra, Carlos & Guerrero, Josep M. & Montero, Eduardo, 2016. "A knowledge discovery in databases approach for industrial microgrid planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 615-630.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:615-630
    DOI: 10.1016/j.rser.2016.01.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116001210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Di & Samsatli, Nouri J. & Hawkes, Adam D. & Brett, Dan J.L. & Shah, Nilay & Papageorgiou, Lazaros G., 2013. "Fair electricity transfer price and unit capacity selection for microgrids," Energy Economics, Elsevier, vol. 36(C), pages 581-593.
    2. Soshinskaya, Mariya & Crijns-Graus, Wina H.J. & van der Meer, Jos & Guerrero, Josep M., 2014. "Application of a microgrid with renewables for a water treatment plant," Applied Energy, Elsevier, vol. 134(C), pages 20-34.
    3. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2014. "A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators," Energy, Elsevier, vol. 64(C), pages 912-922.
    4. Leif Hanrahan, Brian & Lightbody, Gordon & Staudt, Lawrence & G. Leahy, Paul, 2014. "A powerful visualization technique for electricity supply and demand at industrial sites with combined heat and power and wind generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 860-869.
    5. Gamarra, Carlos & Guerrero, Josep M., 2015. "Computational optimization techniques applied to microgrids planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 413-424.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerman Andrej & Erenda Ivan & Bertoncelj Andrej, 2019. "The Influence of Critical Factors on Business Model at a Smart Factory: A Case Study," Business Systems Research, Sciendo, vol. 10(1), pages 42-52, April.
    2. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    3. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    4. Fang, Xinli & Yang, Qiang & Dong, Wei, 2018. "Fuzzy decision based energy dispatch in offshore industrial microgrid with desalination process and multi-type DGs," Energy, Elsevier, vol. 148(C), pages 744-755.
    5. Bahram Shakerighadi & Amjad Anvari-Moghaddam & Juan C. Vasquez & Josep M. Guerrero, 2018. "Internet of Things for Modern Energy Systems: State-of-the-Art, Challenges, and Open Issues," Energies, MDPI, vol. 11(5), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    2. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    6. Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Assessment of optimization algorithms capability in distribution network planning: Review, comparison and modification techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 415-434.
    7. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    8. Chen, Yizhong & He, Li & Li, Jing, 2017. "Stochastic dominant-subordinate-interactive scheduling optimization for interconnected microgrids with considering wind-photovoltaic-based distributed generations under uncertainty," Energy, Elsevier, vol. 130(C), pages 581-598.
    9. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    10. Menon, Ramanunni P. & Paolone, Mario & Maréchal, François, 2013. "Study of optimal design of polygeneration systems in optimal control strategies," Energy, Elsevier, vol. 55(C), pages 134-141.
    11. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    12. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    13. Good, Nicholas & Martínez Ceseña, Eduardo A. & Zhang, Lingxi & Mancarella, Pierluigi, 2016. "Techno-economic and business case assessment of low carbon technologies in distributed multi-energy systems," Applied Energy, Elsevier, vol. 167(C), pages 158-172.
    14. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    15. Igyso Zafeiratou & Ionela Prodan & Laurent Lefévre, 2021. "A Hierarchical Control Approach for Power Loss Minimization and Optimal Power Flow within a Meshed DC Microgrid," Energies, MDPI, vol. 14(16), pages 1-27, August.
    16. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    18. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    19. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    20. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:615-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.