IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp144-154.html
   My bibliography  Save this article

Design methodologies for sizing a battery bank devoted to a stand-alone and electronically passive wind turbine system

Author

Listed:
  • Belouda, Malek
  • Jaafar, Amine
  • Sareni, Bruno
  • Roboam, Xavier
  • Belhadj, Jamel

Abstract

In this paper, the authors investigate four original methodologies for sizing a battery bank inside a passive wind turbine system. This device interacts with wind and load cycles, especially for a stand-alone application. Generally, actual wind speed measurements are of long duration which leads to extensive processing time in a global optimization context requiring a wide number of system simulations. The first part of this article outlines two sizing methodologies based on a statistical approach for the sizing of the electrochemical storage device of a stand-alone passive wind turbine system. Two other efficient methodologies based on the synthesis of compact wind speed profiles by means of evolutionary algorithms are described in the second part of this paper. The results are finally discussed with regard to the relevance of the battery bank sizing and in terms of computation cost, this later issue being crucial to an Integrated Optimal Design (IOD) process.

Suggested Citation

  • Belouda, Malek & Jaafar, Amine & Sareni, Bruno & Roboam, Xavier & Belhadj, Jamel, 2016. "Design methodologies for sizing a battery bank devoted to a stand-alone and electronically passive wind turbine system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 144-154.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:144-154
    DOI: 10.1016/j.rser.2016.01.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116001416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernal-Agustín, José L. & Dufo-López, Rodolfo & Rivas-Ascaso, David M., 2006. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 31(14), pages 2227-2244.
    2. Sareni, B. & Abdelli, A. & Roboam, X. & Tran, D.H., 2009. "Model simplification and optimization of a passive wind turbine generator," Renewable Energy, Elsevier, vol. 34(12), pages 2640-2650.
    3. Dufo-López, Rodolfo & Bernal-Agustín, José L., 2008. "Multi-objective design of PV–wind–diesel–hydrogen–battery systems," Renewable Energy, Elsevier, vol. 33(12), pages 2559-2572.
    4. Senjyu, Tomonobu & Hayashi, Daisuke & Yona, Atsushi & Urasaki, Naomitsu & Funabashi, Toshihisa, 2007. "Optimal configuration of power generating systems in isolated island with renewable energy," Renewable Energy, Elsevier, vol. 32(11), pages 1917-1933.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    2. Sinhara M. H. D. Perera & Ghanim Putrus & Michael Conlon & Mahinsasa Narayana & Keith Sunderland, 2022. "Wind Energy Harvesting and Conversion Systems: A Technical Review," Energies, MDPI, vol. 15(24), pages 1-34, December.
    3. Linda Barelli & Gianni Bidini & Paolo Cherubini & Andrea Micangeli & Dario Pelosi & Carlo Tacconelli, 2019. "How Hybridization of Energy Storage Technologies Can Provide Additional Flexibility and Competitiveness to Microgrids in the Context of Developing Countries," Energies, MDPI, vol. 12(16), pages 1-22, August.
    4. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belouda, M. & Jaafar, A. & Sareni, B. & Roboam, X. & Belhadj, J., 2013. "Integrated optimal design and sensitivity analysis of a stand alone wind turbine system with storage for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 616-624.
    2. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    3. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    4. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    5. Yap, Wai Kean & Karri, Vishy, 2015. "An off-grid hybrid PV/diesel model as a planning and design tool, incorporating dynamic and ANN modelling techniques," Renewable Energy, Elsevier, vol. 78(C), pages 42-50.
    6. Gupta, R.A. & Kumar, Rajesh & Bansal, Ajay Kumar, 2015. "BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1366-1375.
    7. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    8. Beath, Hamish & Baranda Alonso, Javier & Mori, Richard & Gambhir, Ajay & Nelson, Jenny & Sandwell, Philip, 2023. "Maximising the benefits of renewable energy infrastructure in displacement settings: Optimising the operation of a solar-hybrid mini-grid for institutional and business users in Mahama Refugee Camp, R," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    10. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    11. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    12. Zehua Dai & Li Wang & Lexuan Meng & Shanshui Yang & Ling Mao, 2019. "Multi-Level Modeling Methodology for Optimal Design of Electric Machines Based on Multi-Disciplinary Design Optimization," Energies, MDPI, vol. 12(21), pages 1-26, November.
    13. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    14. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    15. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    16. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    17. Maheri, Alireza, 2014. "Multi-objective design optimisation of standalone hybrid wind-PV-diesel systems under uncertainties," Renewable Energy, Elsevier, vol. 66(C), pages 650-661.
    18. Tanaka, Kenichi & Yoza, Akihiro & Ogimi, Kazuki & Yona, Atsushi & Senjyu, Tomonobu & Funabashi, Toshihisa & Kim, Chul-Hwan, 2012. "Optimal operation of DC smart house system by controllable loads based on smart grid topology," Renewable Energy, Elsevier, vol. 39(1), pages 132-139.
    19. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    20. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:144-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.