IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp240-248.html
   My bibliography  Save this article

Investigation of the variability of photosynthetically active radiation in the Tibetan Plateau, China

Author

Listed:
  • Hu, Bo
  • Liu, Hui
  • Wang, Yuesi

Abstract

Photosynthetically active radiation (PAR) is fundamental to most ecological and biophysical processes because it plays a key role in biochemical processes and in the local and global energy budget; however, PAR that is measured in situ is scarce. To obtain high temporal and spatial resolution PAR values for ecological studies, the development of a reconstruction model to estimate PAR from more routinely measured data is important and useful. In this study, we develop an efficient model for estimating PAR under various sky conditions based on in situ measurement data. The relative error between the measured and calculated PAR using this model was within 5.6%. Then, we combine this reconstruction model with the hybrid model to obtain the historical dataset of daily PAR at 37 stations of the China Meteorological Administration (CMA) in the Tibetan Plateau (TP). Based on the historical dataset, the spatial distribution and temporal variation trends of PAR in the TP are discussed. The dimming and brightening period of PAR in the TP is significantly different from the variation trends of the average PAR over all of China. The PAR trends in the TP increased from 1961 to 1983 and then decreased from 1983 to 2003. Since 2003, PAR in the TP has presented an increasing trend. The average values of PAR in brightening and dimming periods are 31.07mol−2m−2d−1 and 30.86molm−2d−1, respectively. Generally, the aerosol optical depth (AOD) can explain 6.2% of the variation of PAR in this region, and water vapour may play an important role in the PAR change. This result may be useful for studies on ecological process modelling in the TP.

Suggested Citation

  • Hu, Bo & Liu, Hui & Wang, Yuesi, 2016. "Investigation of the variability of photosynthetically active radiation in the Tibetan Plateau, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 240-248.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:240-248
    DOI: 10.1016/j.rser.2015.10.155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115012344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lunche & Gong, Wei & Li, Chen & Lin, Aiwen & Hu, Bo & Ma, Yingying, 2013. "Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in Central China," Applied Energy, Elsevier, vol. 111(C), pages 1010-1017.
    2. Wang, Lunche & Gong, Wei & Hu, Bo & Lin, Aiwen & Li, Hui & Zou, Ling, 2015. "Modeling and analysis of the spatiotemporal variations of photosynthetically active radiation in China during 1961–2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1019-1032.
    3. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2009. "Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil," Applied Energy, Elsevier, vol. 86(3), pages 299-309, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Hu, Bo & Gong, Wei, 2016. "Modeling and comparison of hourly photosynthetically active radiation in different ecosystems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 436-453.
    2. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    3. Feiyan Chen & Zhigao Zhou & Aiwen Lin & Jiqiang Niu & Wenmin Qin & Zhong Yang, 2019. "Evaluation of Direct Horizontal Irradiance in China Using a Physically-Based Model and Machine Learning Methods," Energies, MDPI, vol. 12(1), pages 1-19, January.
    4. Porfirio, Anthony Carlos Silva & De Souza, José Leonaldo & Lyra, Gustavo Bastos & Maringolo Lemes, Marco Antonio, 2012. "An assessment of the global UV solar radiation under various sky conditions in Maceió-Northeastern Brazil," Energy, Elsevier, vol. 44(1), pages 584-592.
    5. Anjorin O.F. & Utah E.U & Likita M.S, 2014. "Estimation of Hourly Photo synthetically- Active Radiation (PAR) From Hourly Global Solar Radiation (GSR) In Jos, Nigeria," Asian Review of Environmental and Earth Sciences, Asian Online Journal Publishing Group, vol. 1(2), pages 43-50.
    6. Lisdelys González-Rodríguez & Amauri Pereira de Oliveira & Lien Rodríguez-López & Jorge Rosas & David Contreras & Ana Carolina Baeza, 2021. "A Study of UVER in Santiago, Chile Based on Long-Term In Situ Measurements (Five Years) and Empirical Modelling," Energies, MDPI, vol. 14(2), pages 1-20, January.
    7. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    8. Wang, Lunche & Gong, Wei & Hu, Bo & Lin, Aiwen & Li, Hui & Zou, Ling, 2015. "Modeling and analysis of the spatiotemporal variations of photosynthetically active radiation in China during 1961–2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1019-1032.
    9. Janjai, S. & Pankaew, P. & Laksanaboonsong, J., 2009. "A model for calculating hourly global solar radiation from satellite data in the tropics," Applied Energy, Elsevier, vol. 86(9), pages 1450-1457, September.
    10. Lin, Aiwen & Zou, Ling & Wang, Lunche & Gong, Wei & Zhu, Hongji & Salazar, Germán Ariel, 2016. "Estimation of atmospheric turbidity coefficient β over Zhengzhou, China during 1961–2013 using an improved hybrid model," Renewable Energy, Elsevier, vol. 86(C), pages 1134-1144.
    11. Wang, Lunche & Salazar, Germán Ariel & Gong, Wei & Peng, Simao & Zou, Ling & Lin, Aiwen, 2015. "An improved method for estimating the Ångström turbidity coefficient β in Central China during 1961–2010," Energy, Elsevier, vol. 81(C), pages 67-73.
    12. Zhou, Zhigao & Wang, Lunche & Lin, Aiwen & Zhang, Ming & Niu, Zigeng, 2018. "Innovative trend analysis of solar radiation in China during 1962–2015," Renewable Energy, Elsevier, vol. 119(C), pages 675-689.
    13. Wang, Lunche & Gong, Wei & Li, Chen & Lin, Aiwen & Hu, Bo & Ma, Yingying, 2013. "Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in Central China," Applied Energy, Elsevier, vol. 111(C), pages 1010-1017.
    14. Kaplanis, S. & Kaplani, E., 2010. "Stochastic prediction of hourly global solar radiation for Patra, Greece," Applied Energy, Elsevier, vol. 87(12), pages 3748-3758, December.
    15. Duan, Qiuhua & Feng, Yanxiao & Wang, Julian, 2021. "Clustering of visible and infrared solar irradiance for solar architecture design and analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 668-677.
    16. Marco Hernandez Velasco, 2021. "Enabling Year-round Cultivation in the Nordics-Agrivoltaics and Adaptive LED Lighting Control of Daily Light Integral," Agriculture, MDPI, vol. 11(12), pages 1-31, December.
    17. Dal Pai, Alexandre & Escobedo, João Francisco & Dal Pai, Enzo & de Oliveira, Amauri Pereira & Soares, Jacyra Ramos & Codato, Georgia, 2016. "MEO shadowring method for measuring diffuse solar irradiance: Corrections based on sky cover," Renewable Energy, Elsevier, vol. 99(C), pages 754-763.
    18. Purohit, Ishan & Purohit, Pallav, 2015. "Inter-comparability of solar radiation databases in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 735-747.
    19. Halabi, Laith M. & Mekhilef, Saad & Hossain, Monowar, 2018. "Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation," Applied Energy, Elsevier, vol. 213(C), pages 247-261.
    20. Almorox, J. & Hontoria, C. & Benito, M., 2011. "Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain)," Applied Energy, Elsevier, vol. 88(5), pages 1703-1709, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:240-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.