IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp1624-1635.html
   My bibliography  Save this article

Development of hydro impulse turbines and new opportunities

Author

Listed:
  • Židonis, Audrius
  • Benzon, David S.
  • Aggidis, George A.

Abstract

Hydro impulse turbines are often referred to as a mature technology having been invented around 100 years ago with many of the old design guidelines producing machines of a high efficiency. However with recent advances in Computational Fluid Dynamics (CFD) it is now possible to simulate these highly turbulent multiphase flows with good accuracy and in reasonable timescales. This has opened up an avenue for further development and understanding of these machines which has not been possible through traditional analyses and experimental testing. This paper explores some of the more recent developments in the hydraulic design of Pelton and Turgo Impulse turbines and highlights the opportunities for future development.

Suggested Citation

  • Židonis, Audrius & Benzon, David S. & Aggidis, George A., 2015. "Development of hydro impulse turbines and new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1624-1635.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1624-1635
    DOI: 10.1016/j.rser.2015.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115006541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2013. "Performance of a low-head pico-hydro Turgo turbine," Applied Energy, Elsevier, vol. 102(C), pages 1114-1126.
    2. Židonis, Audrius & Aggidis, George A., 2015. "State of the art in numerical modelling of Pelton turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 135-144.
    3. Aggidis, George A. & Židonis, Audrius, 2014. "Hydro turbine prototype testing and generation of performance curves: Fully automated approach," Renewable Energy, Elsevier, vol. 71(C), pages 433-441.
    4. Aggidis, G.A. & Luchinskaya, E. & Rothschild, R. & Howard, D.C., 2010. "The costs of small-scale hydro power production: Impact on the development of existing potential," Renewable Energy, Elsevier, vol. 35(12), pages 2632-2638.
    5. Cobb, Bryan R. & Sharp, Kendra V., 2013. "Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations," Renewable Energy, Elsevier, vol. 50(C), pages 959-964.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    2. Dallison, Richard J.H. & Patil, Sopan D., 2023. "Impact of climate change on hydropower potential in the UK and Ireland," Renewable Energy, Elsevier, vol. 207(C), pages 611-628.
    3. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    4. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    5. Benzon, D.S. & Aggidis, G.A. & Anagnostopoulos, J.S., 2016. "Development of the Turgo Impulse turbine: Past and present," Applied Energy, Elsevier, vol. 166(C), pages 1-18.
    6. Suyesh, Bhattarai & Parag, Vichare & Keshav, Dahal & Ahmed, Al Makky & Abdul-Ghani, Olabi, 2019. "Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 87-101.
    7. Velásquez, Laura & Posada, Alejandro & Chica, Edwin, 2023. "Surrogate modeling method for multi-objective optimization of the inlet channel and the basin of a gravitational water vortex hydraulic turbine," Applied Energy, Elsevier, vol. 330(PB).
    8. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    2. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    3. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    4. Martinez, Jayson J. & Deng, Zhiqun Daniel & Mueller, Robert & Titzler, Scott, 2020. "In situ characterization of the biological performance of a Francis turbine retrofitted with a modular guide vane," Applied Energy, Elsevier, vol. 276(C).
    5. Auth, Trevor L. & Wackerman, Grace E. & Garcia, Marcelo H. & Stillwell, Ashlynn S., 2021. "Low-head hydropower as a reserve power source: A case study of Northeastern Illinois," Renewable Energy, Elsevier, vol. 175(C), pages 980-989.
    6. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    7. Jeon, Heungsu & Park, Joo Hoon & Shin, Youhwan & Choi, Minsuk, 2018. "Friction loss and energy recovery of a Pelton turbine for different spear positions," Renewable Energy, Elsevier, vol. 123(C), pages 273-280.
    8. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    9. Benzon, D.S. & Aggidis, G.A. & Anagnostopoulos, J.S., 2016. "Development of the Turgo Impulse turbine: Past and present," Applied Energy, Elsevier, vol. 166(C), pages 1-18.
    10. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    11. Suyesh, Bhattarai & Parag, Vichare & Keshav, Dahal & Ahmed, Al Makky & Abdul-Ghani, Olabi, 2019. "Novel trends in modelling techniques of Pelton Turbine bucket for increased renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 87-101.
    12. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    13. Gaiser, Kyle & Erickson, Paul & Stroeve, Pieter & Delplanque, Jean-Pierre, 2016. "An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology," Renewable Energy, Elsevier, vol. 85(C), pages 406-418.
    14. Pujol, T. & Vashisht, A.K. & Ricart, J. & Culubret, D. & Velayos, J., 2015. "Hydraulic efficiency of horizontal waterwheels: Laboratory data and CFD study for upgrading a western Himalayan watermill," Renewable Energy, Elsevier, vol. 83(C), pages 576-586.
    15. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    16. Dallison, Richard J.H. & Patil, Sopan D., 2023. "Impact of climate change on hydropower potential in the UK and Ireland," Renewable Energy, Elsevier, vol. 207(C), pages 611-628.
    17. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    18. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    19. Borkowski, Dariusz & Węgiel, Michał & Ocłoń, Paweł & Węgiel, Tomasz, 2019. "CFD model and experimental verification of water turbine integrated with electrical generator," Energy, Elsevier, vol. 185(C), pages 875-883.
    20. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Performance prediction of a prototype tidal power turbine by using a suitable numerical model," Renewable Energy, Elsevier, vol. 113(C), pages 293-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1624-1635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.