IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v48y2015icp857-869.html
   My bibliography  Save this article

Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications

Author

Listed:
  • Sharafian, Amir
  • Bahrami, Majid

Abstract

Thermodynamic cycle of adsorption cooling systems (ACS) is thoroughly studied under different operating conditions for light-duty vehicles air conditioning applications. Available ACS prototypes installed in vehicles are discussed in detail followed by different ACS thermodynamic cycle modeling. Also, equilibrium uptake and uptake rate of commonly used working pairs in ACS are summarized. The proper ACS thermodynamic cycle with capability of integration with vehicles׳ Engine Control Unit (ECU) is developed and it is validated against two sets of experimental data reported in the literature. The realistic input data in agreement with light-duty vehicles are introduced to the model as the base-case condition to produce 2kW cooling power. Sensitivity of ACS specific cooling power (SCP) and coefficient of performance (COP) are studied with respect to the input parameters. According to the results, the SCP and COP of the base-case ACS are maximized at 10–15min cycle times and adsorption to desorption time ratio (ADTR) of one. In addition, the results indicate that the adsorber bed overall heat transfer conductance and mass have the highest and the lowest effects on the SCP, respectively. Also, the results show that during the operation of ACS, the heating and cooling fluids, coolant fluid and chilled water mass flow rates do not change the SCP and COP after specific values. As a result, variable speed pumps are required to adjust these mass flow rates to reduce feeding pump powers. Finally, the results indicate that the engine coolant cannot provide enough heat for the adsorber bed desorption process under different operating conditions. Therefore, a portion of the exhaust gas of the engine is recommended to be utilized during the desorption process.

Suggested Citation

  • Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
  • Handle: RePEc:eee:rensus:v:48:y:2015:i:c:p:857-869
    DOI: 10.1016/j.rser.2015.04.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115003251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, K. & Wu, J.Y. & Xia, Z.Z. & Li, S.L. & Wang, R.Z., 2008. "Design and performance prediction of a novel double heat pipes type adsorption chiller for fishing boats," Renewable Energy, Elsevier, vol. 33(4), pages 780-790.
    2. Saha, Bidyut B. & Boelman, Elisa C. & Kashiwagi, Takao, 1995. "Computational analysis of an advanced adsorption-refrigeration cycle," Energy, Elsevier, vol. 20(10), pages 983-994.
    3. Yong, Li & Sumathy, K., 2002. "Review of mathematical investigation on the closed adsorption heat pump and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 305-338, August.
    4. Zhao, Yongling & Hu, Eric & Blazewicz, Antoni, 2012. "Dynamic modelling of an activated carbon–methanol adsorption refrigeration tube with considerations of interfacial convection and transient pressure process," Applied Energy, Elsevier, vol. 95(C), pages 276-284.
    5. Zhang, L.Z. & Wang, L., 1999. "Momentum and heat transfer in the adsorbent of a waste-heat adsorption cooling system," Energy, Elsevier, vol. 24(7), pages 605-624.
    6. Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Lim, Leo Sing, 2011. "Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2061-2072, May.
    7. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo, 2011. "Influence of the management strategy and operating conditions on the performance of an adsorption chiller," Energy, Elsevier, vol. 36(9), pages 5532-5538.
    8. Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
    9. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.
    10. Saha, Bidyut B. & Akisawa, Atsushi & Kashiwagi, Takao, 1997. "Silica gel water advanced adsorption refrigeration cycle," Energy, Elsevier, vol. 22(4), pages 437-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    2. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Gao, P. & Wang, L.W. & Zhu, F.Q., 2021. "Vapor-compression refrigeration system coupled with a thermochemical resorption energy storage unit for a refrigerated truck," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    2. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K. & Sur, Anirban, 2017. "An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 364-376.
    3. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    4. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    5. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    6. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    7. Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
    8. Khan, M.Z.I. & Alam, K.C.A. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2008. "Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme," Renewable Energy, Elsevier, vol. 33(1), pages 88-98.
    9. Khan, M.Z.I. & Saha, B.B. & Alam, K.C.A. & Akisawa, A. & Kashiwagi, T., 2007. "Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery," Renewable Energy, Elsevier, vol. 32(3), pages 365-381.
    10. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    11. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    12. Marlinda & Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2010. "Performance Analysis of a Double-effect Adsorption Refrigeration Cycle with a Silica Gel/Water Working Pair," Energies, MDPI, vol. 3(11), pages 1-17, October.
    13. Xu, Jing & Huang, Meng & Liu, Zhiliang & Pan, Quanwen & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of a high-efficient hybrid adsorption refrigeration system for ultralow-grade heat utilization," Energy, Elsevier, vol. 288(C).
    14. Yeo, T.H.C. & Tan, I.A.W. & Abdullah, M.O., 2012. "Development of adsorption air-conditioning technology using modified activated carbon – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3355-3363.
    15. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    16. Pesaran, Alireza & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2016. "Review article: Numerical simulation of adsorption heat pumps," Energy, Elsevier, vol. 100(C), pages 310-320.
    17. Girnik, Ilya S. & Aristov, Yuri I., 2016. "Dynamic optimization of adsorptive chillers: The “AQSOA™-FAM-Z02 – Water” working pair," Energy, Elsevier, vol. 106(C), pages 13-22.
    18. Grekova, A.D. & Girnik, I.S. & Nikulin, V.V. & Tokarev, M.M. & Gordeeva, L.G. & Aristov, Yu.I., 2016. "New composite sorbents of water and methanol “salt in anodic alumina”: Evaluation for adsorption heat transformation," Energy, Elsevier, vol. 106(C), pages 231-239.
    19. Li, Ang & Ismail, Azhar Bin & Thu, Kyaw & Ng, Kim Choon & Loh, Wai Soong, 2014. "Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight," Applied Energy, Elsevier, vol. 130(C), pages 702-711.
    20. Yong, Li & Sumathy, K., 2002. "Review of mathematical investigation on the closed adsorption heat pump and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 305-338, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:48:y:2015:i:c:p:857-869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.