IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v173y2023ics1364032122009777.html
   My bibliography  Save this article

Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: A review

Author

Listed:
  • Sathinathan, P.
  • Parab, H.M.
  • Yusoff, R.
  • Ibrahim, S.
  • Vello, V.
  • Ngoh, G.C.

Abstract

Industrial wastewater containing heavy-metals, along with high quantities of nutrients and soluble salts, promote eutrophication in aquatic bodies. On the contrary, microalgae biomass may be leveraged to produce proteins, carbohydrates, pigments, lipids, hydrocarbons, fertilisers, soil conditioners, fish or animal feed, and a range of other goods. However, due to the high production cost and sensitivity of mass cultivation parameters - nutrients, agitation, pH, light, temperature, degassing, and controls, the current global output of microalgae biomass is approximately 9000 tonnes per year. Thus, combining microalgae cultivation with wastewater treatment is one of the feasible solutions for reducing the operating costs of the wastewater treatment plant, and subsequently reducing the cost of microalgae cultivation. Besides, photobioreactor can play a huge role in controlling the essential parameters for the cultivation of microalgae compared to cultivation in open ponds. This review aims to maximize the microalgae growth using industrial wastewater for cultivation in a photobioreactor while considering the essential parameters. Various microalgae species are feasible for cultivation in various industrial wastewater such as paper and pulp, textile, dairy, heavy metal, food processing and agricultural industries wastewater. The designs, construction materials and comparison of photobioreactors are reviewed under the photobioreactor section while the essential parameters in the photobioreactor are reviewed under the operating conditions section. However, based on the review, there are limited studies that incorporate the cultivation of microalgae using industrial wastewater with a photobioreactor. Optimizations of parameters using industrial wastewater in a photobioreactor to maximize the microalgae growth are crucial to be studied.

Suggested Citation

  • Sathinathan, P. & Parab, H.M. & Yusoff, R. & Ibrahim, S. & Vello, V. & Ngoh, G.C., 2023. "Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009777
    DOI: 10.1016/j.rser.2022.113096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122009777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.113096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chrysanthos Maraveas, 2019. "Environmental Sustainability of Greenhouse Covering Materials," Sustainability, MDPI, vol. 11(21), pages 1-24, November.
    2. Ferreira, L.S. & Rodrigues, M.S. & Converti, A. & Sato, S. & Carvalho, J.C.M., 2012. "Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: Use of no-cost CO2 from ethanol fermentation," Applied Energy, Elsevier, vol. 92(C), pages 379-385.
    3. Naira, Venkateswara R. & Das, Debasish & Maiti, Soumen K., 2020. "A novel bubble-driven internal mixer for improving productivities of algal biomass and biodiesel in a bubble-column photobioreactor under natural sunlight," Renewable Energy, Elsevier, vol. 157(C), pages 605-615.
    4. Beata Brzychczyk & Tomasz Hebda & Jakub Fitas & Jan Giełżecki, 2020. "The Follow-up Photobioreactor Illumination System for the Cultivation of Photosynthetic Microorganisms," Energies, MDPI, vol. 13(5), pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilyes Dammak & Mariem Fersi & Ridha Hachicha & Slim Abdelkafi, 2023. "Current Insights into Growing Microalgae for Municipal Wastewater Treatment and Biomass Generation," Resources, MDPI, vol. 12(10), pages 1-28, October.
    2. Teng-Fei Ma & Jin Wu & Yi-Chang Yu & Ting-Ting Chen & Yuan Yao & Wei-Ling Liao & Li Feng & Jiang Pan, 2023. "An Assessment of the Heavy Metal Contamination, Risk, and Source Identification in the Sediments from the Liangtan River, China," Sustainability, MDPI, vol. 15(23), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    2. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.
    3. Chrysanthos Maraveas, 2020. "Environmental Sustainability of Plastic in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-15, July.
    4. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    5. Mayer, Flávio Dias & Feris, Liliana Amaral & Marcilio, Nilson Romeu & Hoffmann, Ronaldo, 2015. "Why small-scale fuel ethanol production in Brazil does not take off?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 687-701.
    6. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    7. Beata Brzychczyk & Jan Giełżecki & Krzysztof Kijanowski & Tomasz Hebda & Filip Rzepka, 2023. "Automation of the Photobioreactor Lighting System to Manage Light Distribution in Microalgae Cultures," Energies, MDPI, vol. 16(20), pages 1-20, October.
    8. Chang, Yuanyuan & Wu, Zucheng & Bian, Lei & Feng, Daolun & Leung, Dennis Y.C., 2013. "Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine," Applied Energy, Elsevier, vol. 102(C), pages 427-431.
    9. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Mohammad Akrami & Can Dogan Mutlum & Akbar A. Javadi & Alaa H. Salah & Hassan E. S. Fath & Mahdieh Dibaj & Raziyeh Farmani & Ramy H. Mohammed & Abdelazim Negm, 2021. "Analysis of Inlet Configurations on the Microclimate Conditions of a Novel Standalone Agricultural Greenhouse for Egypt Using Computational Fluid Dynamics," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    11. Román-Roldán, N.I. & Ituna Yudonago, J.F. & López-Ortiz, A. & Rodríguez-Ramírez, J. & Sandoval-Torres, S., 2021. "A new air recirculation system for homogeneous solar drying: Computational fluid dynamics approach," Renewable Energy, Elsevier, vol. 179(C), pages 1727-1741.
    12. Asim Ahmad & Om Prakash & Anil Kumar & Rajeshwari Chatterjee & Shubham Sharma & Vineet Kumar & Kushagra Kulshreshtha & Changhe Li & Elsayed Mohamed Tag Eldin, 2022. "A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying," Energies, MDPI, vol. 15(24), pages 1-42, December.
    13. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    14. Beata Brzychczyk & Tomasz Hebda & Jakub Fitas & Jan Giełżecki, 2020. "The Follow-up Photobioreactor Illumination System for the Cultivation of Photosynthetic Microorganisms," Energies, MDPI, vol. 13(5), pages 1-9, March.
    15. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    16. Vieira de Mendonça, Henrique & Assemany, Paula & Abreu, Mariana & Couto, Eduardo & Maciel, Alyne Martins & Duarte, Renata Lopes & Barbosa dos Santos, Marcela Granato & Reis, Alberto, 2021. "Microalgae in a global world: New solutions for old problems?," Renewable Energy, Elsevier, vol. 165(P1), pages 842-862.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.