IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v161y2022ics1364032122002374.html
   My bibliography  Save this article

A review on the electrocatalytic dissociation of water over stainless steel: Hydrogen and oxygen evolution reactions

Author

Listed:
  • Raza, A.
  • Deen, K.M.
  • Asselin, E.
  • Haider, W.

Abstract

For the hydrogen economy to be viable, new, and efficient production techniques are of prime importance. Water electrolysis offers high production of hydrogen but due to slow reaction rates on many electrode surfaces, electrocatalysts are needed. However effective electrocatalysts, such as platinum and rhenium, may be impractical for economic operation. Therefore, research in this area has been focused on finding materials that can replace these expensive electrocatalysts. The electrocatalytic behaviour of stainless steel towards water dissociation is presented. The use of two widely available and comparatively inexpensive stainless steels i.e., 304 and 316L, in a variety of forms, i.e., mesh, solid electrode, and adsorbed nanoparticles is discussed. Results of microscopic characterization are compiled to illustrate how surface modification of these substrates affects their electrocatalytic ability. The crystallographic orientations i.e. (111) and (220) in the microstructure of stainless steel are believed to be effective in catalytic dissociation of H2O. The catalytic activity and long-term stability measurements of stainless steels have yielded results similar to or sometimes better than-those of the noble electrocatalysts. The review briefly captures the current progress in HER and OER electrocatalysis on stainless steels and highlights the possible research solutions to overcome existing challenges i.e., lack of active centers, the surface modification needed, poisoning of active species and an overall low stability, the solution to which could make stainless steel a viable replacement for the precious metals electrocatalysts.

Suggested Citation

  • Raza, A. & Deen, K.M. & Asselin, E. & Haider, W., 2022. "A review on the electrocatalytic dissociation of water over stainless steel: Hydrogen and oxygen evolution reactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002374
    DOI: 10.1016/j.rser.2022.112323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122002374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir, 2019. "Assessing the Long-Term Global Sustainability of the Production and Supply for Stainless Steel," Biophysical Economics and Resource Quality, Springer, vol. 4(2), pages 1-29, June.
    2. Cai, H.Y. & Ma, J.F. & Li, N.N. & Li, W.P. & Li, S.P. & Qiu, M.X. & An, H.Y. & Zhang, S.W. & Li, X.Q. & Chen, J.R. & Lin, S.H. & Xu, J.B. & Wang, N., 2022. "Investigation on hydrogen evolution reaction performance of porous electrode prepared by laser powder bed fusion," Renewable Energy, Elsevier, vol. 185(C), pages 771-778.
    3. Fang Yu & Haiqing Zhou & Yufeng Huang & Jingying Sun & Fan Qin & Jiming Bao & William A. Goddard & Shuo Chen & Zhifeng Ren, 2018. "High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    5. Sonja Renssen, 2020. "The hydrogen solution?," Nature Climate Change, Nature, vol. 10(9), pages 799-801, September.
    6. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    7. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    8. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    9. Afgan, Naim H. & Carvalho, Maria G., 2002. "Multi-criteria assessment of new and renewable energy power plants," Energy, Elsevier, vol. 27(8), pages 739-755.
    10. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    11. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    2. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    3. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    4. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    5. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    6. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    7. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    9. Alviani, Vani Novita & Hirano, Nobuo & Watanabe, Noriaki & Oba, Masahiro & Uno, Masaoki & Tsuchiya, Noriyoshi, 2021. "Local initiative hydrogen production by utilization of aluminum waste materials and natural acidic hot-spring water," Applied Energy, Elsevier, vol. 293(C).
    10. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    11. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    12. Li, Guoxuan & Wang, Shuai & Zhao, Jiangang & Qi, Huaqing & Ma, Zhaoyuan & Cui, Peizhe & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong, 2020. "Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming," Energy, Elsevier, vol. 199(C).
    13. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    14. Svetlana Revinova & Inna Lazanyuk & Svetlana Ratner & Konstantin Gomonov, 2023. "Forecasting Development of Green Hydrogen Production Technologies Using Component-Based Learning Curves," Energies, MDPI, vol. 16(11), pages 1-19, May.
    15. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    16. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    18. Rahil, Abdulla & Gammon, Rupert & Brown, Neil, 2018. "Flexible operation of electrolyser at the garage forecourt to support grid balancing and exploitation of hydrogen as a clean fuel," Research in Transportation Economics, Elsevier, vol. 70(C), pages 125-138.
    19. Lopes, J.V.M. & Bresciani, A.E. & Carvalho, K.M. & Kulay, L.A. & Alves, R.M.B., 2021. "Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.