IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i2p1067-1072.html
   My bibliography  Save this article

Lipid extraction and biodiesel production from municipal sewage sludges: A review

Author

Listed:
  • Siddiquee, Muhammad N.
  • Rohani, Sohrab

Abstract

Extensive research is being conducted all over the world to produce fuels from renewable biomass. Biodiesel, a renewable liquid fuel produced from lipid sources, is one of the most attractive among the options explored for alternative energy sources. However, 70-80% of the overall biodiesel production cost is associated with raw materials cost. Municipal sewage sludge is readily available at no cost. It contains various lipids and hence it is a promising raw material for biodiesel production. Lipids can be initially extracted from the sludge. Subsequently, the extracted lipid is converted to biodiesel by esterification and/or transesterification reaction. Biodiesel is also produced by in situ transesterification of dried sludge. This paper reviews the various lipid extraction techniques and biodiesel production processes from municipal wastewater sludge.

Suggested Citation

  • Siddiquee, Muhammad N. & Rohani, Sohrab, 2011. "Lipid extraction and biodiesel production from municipal sewage sludges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1067-1072, February.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:2:p:1067-1072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00398-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathiarasi, Ramasamy & Partha, Nagarajan, 2016. "Optimization, kinetics and thermodynamic studies on oil extraction from Daturametel Linn oil seed for biodiesel production," Renewable Energy, Elsevier, vol. 96(PA), pages 583-590.
    2. Liu, Xiaoyan & Zhu, Fenfen & Zhang, Rongyan & Zhao, Luyao & Qi, Juanjuan, 2021. "Recent progress on biodiesel production from municipal sewage sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    4. Selvakumar, P. & Arunagiri, A. & Sivashanmugam, P., 2019. "Thermo-sonic assisted enzymatic pre-treatment of sludge biomass as potential feedstock for oleaginous yeast cultivation to produce biodiesel," Renewable Energy, Elsevier, vol. 139(C), pages 1400-1411.
    5. Ma, Jinxing & Wang, Zhiwei & Zhu, Chaowei & Xu, Yinlun & Wu, Zhichao, 2014. "Electrogenesis reduces the combustion efficiency of sewage sludge," Applied Energy, Elsevier, vol. 114(C), pages 283-289.
    6. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    7. Choi, Oh Kyung & Park, Jo Yong & Kim, Jae-Kon & Lee, Jae Woo, 2019. "Bench-scale production of sewage sludge derived-biodiesel (SSD-BD) and upgrade of its quality," Renewable Energy, Elsevier, vol. 141(C), pages 914-921.
    8. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    9. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    10. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    11. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    12. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 621-632.
    13. Silva, Valéria Lima Oliveira & Melo, Josué Alves & Oliveira, Luciano Basto & Pedroso, Luiz Roberto & Simionatto, Edésio Luiz & de Matos, Débora Isolani & Scharf, Dilamara Riva & Figueiredo, Elizabeth , 2019. "Esters from frying oil, sewage scum, and domestic fat trap residue for potential use as biodiesel," Renewable Energy, Elsevier, vol. 135(C), pages 945-950.
    14. Ong, Lu Ki & Effendi, Chintya & Kurniawan, Alfin & Lin, Chun Xiang & Zhao, Xiu Song & Ismadji, Suryadi, 2013. "Optimization of catalyst-free production of biodiesel from Ceiba pentandra (kapok) oil with high free fatty acid contents," Energy, Elsevier, vol. 57(C), pages 615-623.
    15. Costa, A.O. & Oliveira, L.B. & Lins, M.P.E. & Silva, A.C.M. & Araujo, M.S.M. & Pereira Jr., A.O. & Rosa, L.P., 2013. "Sustainability analysis of biodiesel production: A review on different resources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 407-412.
    16. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    17. Binhayeeding, Narisa & Klomklao, Sappasith & Prasertsan, Poonsuk & Sangkharak, Kanokphorn, 2020. "Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate," Renewable Energy, Elsevier, vol. 162(C), pages 1819-1827.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:2:p:1067-1072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.