IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i1p169-185.html
   My bibliography  Save this article

Segmented polymer electrolyte membrane fuel cells--A review

Author

Listed:
  • Pérez, Luis C.
  • Brandão, Lúcia
  • Sousa, José M.
  • Mendes, Adélio

Abstract

A complex interaction of many design, assembling and operating parameters as well as the properties of the materials used in the construction of polymer electrolyte membrane fuel cells (PEMFC) result in an uneven electrochemical performance over the MEA active area. For more than one decade, segmented PEMFC (SFC) have been used to study the factors responsible for that uneven performance. This paper reviews relevant literature related to SFC published since 1998 focusing on the three most important SFC design techniques: (1) printed circuit board, (2) resistors network and (3) Hall effect sensors. First, the three techniques are described and fundamental considerations for its design, construction and electrochemical characterization are provided. After that, the effect of most important parameters on the current density distribution is highlighted. Finally, representative results combining current density distribution measurements with other analytical techniques for distributed analysis are presented.

Suggested Citation

  • Pérez, Luis C. & Brandão, Lúcia & Sousa, José M. & Mendes, Adélio, 2011. "Segmented polymer electrolyte membrane fuel cells--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 169-185, January.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:169-185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00286-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sutharssan, Thamo & Montalvao, Diogo & Chen, Yong Kang & Wang, Wen-Chung & Pisac, Claudia & Elemara, Hakim, 2017. "A review on prognostics and health monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 440-450.
    2. Christos Kalyvas & Anthony Kucernak & Dan Brett & Gareth Hinds & Steve Atkins & Nigel Brandon, 2014. "Spatially resolved diagnostic methods for polymer electrolyte fuel cells: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 254-275, May.
    3. Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
    4. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    5. Zhang, Qian & Lin, Rui & Técher, Ludovic & Cui, Xin, 2016. "Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution," Energy, Elsevier, vol. 115(P1), pages 550-560.
    6. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    7. Alaefour, Ibrahim & Karimi, G. & Jiao, Kui & Li, X., 2012. "Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements – A parametric study," Applied Energy, Elsevier, vol. 93(C), pages 80-89.
    8. Miao, Tianwei & Tongsh, Chasen & Wang, Jianan & Cheng, Peng & Liang, Jinqiao & Wang, Zixuan & Chen, Wenmiao & Zhang, Chao & Xi, Fuqiang & Du, Qing & Wang, Bowen & Bai, Fuqiang & Jiao, Kui, 2022. "Current density and temperature distribution measurement and homogeneity analysis for a large-area proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PA).
    9. Manik Mayur & Mathias Gerard & Pascal Schott & Wolfgang G. Bessler, 2018. "Lifetime Prediction of a Polymer Electrolyte Membrane Fuel Cell under Automotive Load Cycling Using a Physically-Based Catalyst Degradation Model," Energies, MDPI, vol. 11(8), pages 1-21, August.
    10. Yin, Cong & Gao, Jianlong & Wen, Xuhui & Xie, Guangyou & Yang, Chunhua & Fang, Honglin & Tang, Hao, 2016. "In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model," Energy, Elsevier, vol. 113(C), pages 1071-1089.
    11. Garcia-Sanchez, D. & Morawietz, T. & da Rocha, P. Gama & Hiesgen, R. & Gazdzicki, P. & Friedrich, K.A., 2020. "Local impact of load cycling on degradation in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 259(C).
    12. Singdeo, Debanand & Dey, Tapobrata & Gaikwad, Shrihari & Andreasen, Søren Juhl & Ghosh, Prakash C., 2017. "A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 195(C), pages 13-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:169-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.