IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121008704.html
   My bibliography  Save this article

A comprehensive review of thermophysical properties and prospects of ionanocolloids in thermal energy applications

Author

Listed:
  • Fabre, Elaine
  • Murshed, S.M. Sohel

Abstract

The increasing research efforts for more efficient fluids for thermal energy applications have driven to the upsurge of many investigations in fluids with improved thermophysical properties. In this sense, the ionic liquid-based nanofluids termed here as “Ionanocolloids” have gained considerable attention, because they combine the remarkable physicochemical features of the ionic liquids with the significant high thermal conductivity of nanoparticles to produce an excellent alternative to replace the conventional fluids. Moreover, due to their negligible vapour pressure, these fluids are more eco-friendly and represent a sustainable alternative media in thermal management and energy fields. Despite recent increase in research and publications on this new type of fluids, except this study, there is no work featuring an extensive state of the art and prospect of the ionic liquids and their ionanocolloids particularly for their thermophysical properties and energy applications available in the literature. Moreover, besides a systematic comparison of the available data, this work provides insights into the behaviour and thermal features of the ionanocolloids with different experimental conditions and makes a critical analysis about their challenges and prospects.

Suggested Citation

  • Fabre, Elaine & Murshed, S.M. Sohel, 2021. "A comprehensive review of thermophysical properties and prospects of ionanocolloids in thermal energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008704
    DOI: 10.1016/j.rser.2021.111593
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121008704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Daili & Feng, Yanhui & Qiu, Lin & Li, Pei & Zang, Yuyang & Zou, Hanying & Yu, Zepei & Zhang, Xinxin, 2019. "Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 578-605.
    2. Liu, Jian & Wang, Fuxian & Zhang, Long & Fang, Xiaoming & Zhang, Zhengguo, 2014. "Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications," Renewable Energy, Elsevier, vol. 63(C), pages 519-523.
    3. Murshed, S.M. Sohel & Nieto de Castro, C.A. & Lourenço, M.J.V. & Lopes, M.L.M. & Santos, F.J.V., 2011. "A review of boiling and convective heat transfer with nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2342-2354, June.
    4. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    5. Minea, Alina Adriana & Murshed, S. M. Sohel, 2018. "A review on development of ionic liquid based nanofluids and their heat transfer behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 584-599.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    2. Helena M. R. Gonçalves & Susana A. F. Neves & Abel Duarte & Verónica de Zea Bermudez, 2020. "Nanofluid Based on Carbon Dots Functionalized with Ionic Liquids for Energy Applications," Energies, MDPI, vol. 13(3), pages 1-16, February.
    3. Liu, Changhui & Qiao, Yu & Du, Peixing & Zhang, Jiahao & Zhao, Jiateng & Liu, Chenzhen & Huo, Yutao & Qi, Cong & Rao, Zhonghao & Yan, Yuying, 2021. "Recent advances of nanofluids in micro/nano scale energy transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    5. Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
    6. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    7. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
    8. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    9. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    10. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    11. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    12. Cheng, Wen-Long & Zhang, Wei-Wei & Chen, Hua & Hu, Lei, 2016. "Spray cooling and flash evaporation cooling: The current development and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 614-628.
    13. Naveed Ahmed & Fitnat Saba & Umar Khan & Ilyas Khan & Tawfeeq Abdullah Alkanhal & Imran Faisal & Syed Tauseef Mohyud-Din, 2018. "Spherical Shaped ( A g − F e 3 O 4 / H 2 O ) Hybrid Nanofluid Flow Squeezed between Two Riga Plates with Nonlinear Thermal Radiation and Chemical Reaction Effects," Energies, MDPI, vol. 12(1), pages 1-23, December.
    14. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.
    15. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Jia, Lisi & Chen, Ying & Lei, Shijun & Mo, Songping & Luo, Xianglong & Shao, Xuefeng, 2016. "External electromagnetic field-aided freezing of CMC-modified graphene/water nanofluid," Applied Energy, Elsevier, vol. 162(C), pages 1670-1677.
    17. Yan, Xiaoxin & Feng, Yanhui & Qiu, Lin & Zhang, Xinxin, 2021. "Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials," Energy, Elsevier, vol. 233(C).
    18. Azmi, W.H. & Sharma, K.V. & Mamat, Rizalman & Najafi, G. & Mohamad, M.S., 2016. "The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1046-1058.
    19. Nurul Amira Zainal & Roslinda Nazar & Kohilavani Naganthran & Ioan Pop, 2022. "Unsteady Separated Stagnation-Point Flow Past a Moving Plate with Suction Effect in Hybrid Nanofluid," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    20. Zhang, Xiangguo & Li, Yuqing & Luo, Chunhuan & Pan, Chongchao, 2021. "Fabrication and properties of novel tubular carbon fiber-ionic liquids/stearic acid composite PCMs," Renewable Energy, Elsevier, vol. 177(C), pages 411-421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.