IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121003270.html
   My bibliography  Save this article

Review of protection systems for multi-terminal high voltage direct current grids

Author

Listed:
  • Perez-Molina, M.J.
  • Larruskain, D.M.
  • Eguia Lopez, P.
  • Buigues, G.
  • Valverde, V.

Abstract

Given the current evolution of Voltage Source Converters (VSC), Multi-Terminal High Voltage Direct Current (MTDC) grids are now becoming a real possibility. Still, some technical issues have to be addressed. The protection of High Voltage Direct Current (HVDC) grids is the main technical challenge that is slowing down the development of MTDC grids. Hence, this paper focuses on protection systems. Thus, protection devices, fault-clearing strategies and protection system requirements are considered. The main topic of this paper is the review of different types of protection methods for MTDC systems that are shown in the literature. They can be classified depending on the use of local measurements or a communication channel in their operation. The protection systems reviewed in this paper include protection systems based on current measurements, voltage measurement, traveling wave analysis and artificial intelligence. A protection system can employ only one of these methods or a combination of them. Finally, the main characteristics of the reviewed protection algorithms are compared, highlighting the system configuration, the converter technology, the adopted fault-clearing strategy, the implemented circuit breakers and the size of the limiting inductors. From the work presented in this paper, it is concluded that the actual tendency in MTDC protection systems is predominantly full-selective fault-clearing strategies combined with hybrid HVDC circuit breakers in series with limiting inductors. In addition, most protection methods are based on current measurement algorithms and a considerably high number of the reviewed protection systems employ a combination of several methods benefiting from their combined characteristics.

Suggested Citation

  • Perez-Molina, M.J. & Larruskain, D.M. & Eguia Lopez, P. & Buigues, G. & Valverde, V., 2021. "Review of protection systems for multi-terminal high voltage direct current grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121003270
    DOI: 10.1016/j.rser.2021.111037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121003270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jianwei & Yang, Qingqing & Mu, Hao & Le Blond, Simon & He, Hongwen, 2018. "A new fault detection and fault location method for multi-terminal high voltage direct current of offshore wind farm," Applied Energy, Elsevier, vol. 220(C), pages 13-20.
    2. María José Pérez Molina & Dunixe Marene Larruskain & Pablo Eguía López & Agurtzane Etxegarai, 2019. "Analysis of Local Measurement-Based Algorithms for Fault Detection in a Multi-Terminal HVDC Grid," Energies, MDPI, vol. 12(24), pages 1-20, December.
    3. Rui Li & Lie Xu, 2018. "Review of DC fault protection for HVDC grids," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(2), March.
    4. Lu Qu & Zhanqing Yu & Xiang Xiao & Wei Zhao & Yulong Huang & Rong Zeng, 2019. "Development and Application of a 10 kV Mechanical DC Circuit Breaker," Energies, MDPI, vol. 12(19), pages 1-15, September.
    5. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    6. Lingtong Jiang & Qing Chen & Wudi Huang & Lei Wang & Yu Zeng & Pu Zhao, 2018. "Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(8), pages 1-15, August.
    7. Blond, S. Le & Bertho, R. & Coury, D.V. & Vieira, J.C.M., 2016. "Design of protection schemes for multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 965-974.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María José Pérez-Molina & Dunixe Marene Larruskain & Pablo Eguia & Oihane Abarrategi, 2021. "Circuit Breaker Failure Protection Strategy for HVDC Grids," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Shuhao Liu & Kunlun Han & Hongzheng Li & Tengyue Zhang & Fengyuan Chen, 2023. "A Two-Terminal Directional Protection Method for HVDC Transmission Lines of Current Fault Component Based on Improved VMD-Hilbert Transform," Energies, MDPI, vol. 16(19), pages 1-21, October.
    3. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    4. Andrei Stan & Sorina Costinaș & Georgiana Ion, 2022. "Overview and Assessment of HVDC Current Applications and Future Trends," Energies, MDPI, vol. 15(3), pages 1-25, February.
    5. Abha Pragati & Manohar Mishra & Pravat Kumar Rout & Debadatta Amaresh Gadanayak & Shazia Hasan & B. Rajanarayan Prusty, 2023. "A Comprehensive Survey of HVDC Protection System: Fault Analysis, Methodology, Issues, Challenges, and Future Perspective," Energies, MDPI, vol. 16(11), pages 1-39, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Radwan & Sahar Pirooz Azad, 2022. "Protection of Multi-Terminal HVDC Grids: A Comprehensive Review," Energies, MDPI, vol. 15(24), pages 1-37, December.
    2. Mani Ashouri & Filipe Faria da Silva & Claus Leth Bak, 2019. "A Harmonic Based Pilot Protection Scheme for VSC-MTDC Grids with PWM Converters," Energies, MDPI, vol. 12(6), pages 1-16, March.
    3. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    4. Navid Bayati & Mehdi Savaghebi, 2021. "Protection Systems for DC Shipboard Microgrids," Energies, MDPI, vol. 14(17), pages 1-20, August.
    5. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    6. Ruixiong Yang & Ke Fang & Jianfu Chen & Yong Chen & Min Liu & Qingxu Meng, 2023. "A Novel Protection Strategy for Single Pole-to-Ground Fault in Multi-Terminal DC Distribution Network," Energies, MDPI, vol. 16(6), pages 1-16, March.
    7. Liang, Jinping & Zhang, Ke & Al-Durra, Ahmed & Zhou, Daming, 2020. "A novel fault diagnostic method in power converters for wind power generation system," Applied Energy, Elsevier, vol. 266(C).
    8. Baidawi, Susan & Sheehan, Rosemary & Flynn, Catherine, 2020. "Criminal exploitation of child protection-involved youth," Children and Youth Services Review, Elsevier, vol. 118(C).
    9. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    10. María José Pérez Molina & Dunixe Marene Larruskain & Pablo Eguía López & Agurtzane Etxegarai, 2019. "Analysis of Local Measurement-Based Algorithms for Fault Detection in a Multi-Terminal HVDC Grid," Energies, MDPI, vol. 12(24), pages 1-20, December.
    11. Raheel Muzzammel & Ali Raza, 2020. "A Support Vector Machine Learning-Based Protection Technique for MT-HVDC Systems," Energies, MDPI, vol. 13(24), pages 1-33, December.
    12. Jiyang Wu & Qiang Li & Qian Chen & Guangqiang Peng & Jinyu Wang & Qiang Fu & Bo Yang, 2022. "Evaluation, Analysis and Diagnosis for HVDC Transmission System Faults via Knowledge Graph under New Energy Systems Construction: A Critical Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    13. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    14. Raheel Muzzammel, 2019. "Traveling Waves-Based Method for Fault Estimation in HVDC Transmission System," Energies, MDPI, vol. 12(19), pages 1-31, September.
    15. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2019. "Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model," Energy, Elsevier, vol. 187(C).
    16. Terriche, Yacine & Lashab, Abderezak & Çimen, Halil & Guerrero, Josep M. & Su, Chun-Lien & Vasquez, Juan C., 2022. "Power quality assessment using signal periodicity independent algorithms – A shipboard microgrid case study," Applied Energy, Elsevier, vol. 307(C).
    17. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    18. Abha Pragati & Manohar Mishra & Pravat Kumar Rout & Debadatta Amaresh Gadanayak & Shazia Hasan & B. Rajanarayan Prusty, 2023. "A Comprehensive Survey of HVDC Protection System: Fault Analysis, Methodology, Issues, Challenges, and Future Perspective," Energies, MDPI, vol. 16(11), pages 1-39, May.
    19. Waqas Javed & Dong Chen & Mohamed Emad Farrag & Yan Xu, 2019. "System Configuration, Fault Detection, Location, Isolation and Restoration: A Review on LVDC Microgrid Protections," Energies, MDPI, vol. 12(6), pages 1-30, March.
    20. Li, Jianwei & Yang, Qingqing & Mu, Hao & Le Blond, Simon & He, Hongwen, 2018. "A new fault detection and fault location method for multi-terminal high voltage direct current of offshore wind farm," Applied Energy, Elsevier, vol. 220(C), pages 13-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121003270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.