IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v141y2021ics1364032121000599.html
   My bibliography  Save this article

An enterprise control assessment case study of the energy–water nexus for the ISO New England system

Author

Listed:
  • Muhanji, Steffi Olesi
  • Barrows, Clayton
  • Macknick, Jordan
  • Farid, Amro M.

Abstract

The generation mix of Independent System Operator in New England (ISO-NE) is fundamentally changing. Nuclear, coal, and oil generation facilities are retiring and are replaced with natural gas, solar, and wind generation. Variable renewable energy resources (VREs) such as solar and wind present multiple operational challenges that require new and innovative ways to manage and control the grid. This paper studies how water supply systems (water and wastewater treatment), and water-dependent electricity generating resources (hydro, and thermal power plants) can be operated flexibly to enhance the reliability of the grid. The study’s methodology employs the novel Electric Power Enterprise Control System (EPECS) simulator to study power systems operation, and the System-Level Generic Model (SGEM) to study water consumption and withdrawals. This work considers six potential 2040 scenarios for the ISO-NE energy–water nexus (EWN). It presents a holistic analysis that quantifies grid imbalances, normal operating reserves, energy market production costs, and water withdrawals and consumption. For scenarios with high amounts of VREs, the study shows great potential of water resources to enhance grid flexibility through improvements in load-following (up to 12.66%), and ramping (up to 18.35%) reserves. Flexible operation also results in up to 10.90% reduction in the total time VREs are curtailed. Additionally, flexible operation reduces water withdrawals by up to 25.58%, water consumption by up to 5.30%, and carbon dioxide emissions by up to 3.46%. In general, this work provides significant insights into how to jointly control the water and energy supply systems to aid in their synergistic integration.

Suggested Citation

  • Muhanji, Steffi Olesi & Barrows, Clayton & Macknick, Jordan & Farid, Amro M., 2021. "An enterprise control assessment case study of the energy–water nexus for the ISO New England system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000599
    DOI: 10.1016/j.rser.2021.110766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manfredi Crainz & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Francesco Montana & Rossano Musca & Eleonora Riva Sanseverino & Enrico Telaretti, 2019. "Flexibility Services to Minimize the Electricity Production from Fossil Fuels. A Case Study in a Mediterranean Small Island," Energies, MDPI, vol. 12(18), pages 1-38, September.
    2. Diaz, Cesar & Ruiz, Fredy & Patino, Diego, 2017. "Modeling and control of water booster pressure systems as flexible loads for demand response," Applied Energy, Elsevier, vol. 204(C), pages 106-116.
    3. Hamiche, Ait Mimoune & Stambouli, Amine Boudghene & Flazi, Samir, 2016. "A review of the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 319-331.
    4. Al-Nory, Malak & El-Beltagy, Mohamed, 2014. "An energy management approach for renewable energy integration with power generation and water desalination," Renewable Energy, Elsevier, vol. 72(C), pages 377-385.
    5. Caroline King & Hadi Jaafar, 2015. "Rapid assessment of the water-energy-food-climate nexus in six selected basins of North Africa and West Asia undergoing transitions and scarcity threats," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(3), pages 343-359, September.
    6. Lubega, William N. & Farid, Amro M., 2014. "Quantitative engineering systems modeling and analysis of the energy–water nexus," Applied Energy, Elsevier, vol. 135(C), pages 142-157.
    7. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    8. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "Real-time economic dispatch for the supply side of the energy-water nexus," Applied Energy, Elsevier, vol. 122(C), pages 42-52.
    9. Menke, Ruben & Abraham, Edo & Parpas, Panos & Stoianov, Ivan, 2016. "Demonstrating demand response from water distribution system through pump scheduling," Applied Energy, Elsevier, vol. 170(C), pages 377-387.
    10. Muhanji, Steffi O. & Farid, Amro M., 2020. "An enterprise control methodology for the techno-economic assessment of the energy water nexus," Applied Energy, Elsevier, vol. 260(C).
    11. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy–water nexus," Energy, Elsevier, vol. 66(C), pages 363-377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edmonds, Lawryn & Derby, Melanie & Hill, Mary & Wu, Hongyu, 2021. "Coordinated operation of water and electricity distribution networks with variable renewable energy and distribution locational marginal pricing," Renewable Energy, Elsevier, vol. 177(C), pages 1438-1450.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
    3. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    4. Giudici, Federico & Castelletti, Andrea & Garofalo, Elisabetta & Giuliani, Matteo & Maier, Holger R., 2019. "Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid islands," Applied Energy, Elsevier, vol. 250(C), pages 605-616.
    5. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    6. Muhanji, Steffi O. & Farid, Amro M., 2020. "An enterprise control methodology for the techno-economic assessment of the energy water nexus," Applied Energy, Elsevier, vol. 260(C).
    7. Sui, Quan & Wei, Fanrong & Zhang, Rui & Lin, Xiangning & Tong, Ning & Wang, Zhixun & Li, Zhengtian, 2019. "Optimal use of electric energy oriented water-electricity combined supply system for the building-integrated-photovoltaics community," Applied Energy, Elsevier, vol. 247(C), pages 549-558.
    8. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    9. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    10. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    11. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
    12. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    13. Govind Joshi & Salman Mohagheghi, 2021. "Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters," Energies, MDPI, vol. 14(19), pages 1-19, September.
    14. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    16. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    17. Zhai, Haibo & Rubin, Edward S. & Grol, Eric J. & O'Connell, Andrew C. & Wu, Zitao & Lewis, Eric G., 2022. "Dry cooling retrofits at existing fossil fuel-fired power plants in a water-stressed region: Tradeoffs in water savings, cost, and capacity shortfalls," Applied Energy, Elsevier, vol. 306(PA).
    18. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    19. Lubega, William N. & Farid, Amro M., 2014. "Quantitative engineering systems modeling and analysis of the energy–water nexus," Applied Energy, Elsevier, vol. 135(C), pages 142-157.
    20. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.