IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp1113-1122.html
   My bibliography  Save this article

Development and testing of surface-based and water-based-diffusion kinetic models for studying hydrolysis and biogas production from cow manure

Author

Listed:
  • Momoh, Yusuf O.L.
  • Saroj, D.P.

Abstract

The hydrolytic step is usually considered the rate limiting step in the biological conversion of ligno-cellulose material into biofuels. Current optimization approach attempts to understand the mechanism of hydrolysis in order to boost production. In this study, the development and testing of a surface-based and a water-based-diffusion kinetic model for modeling biogas production from cow manure was conducted using total solid (TS) loading ranging from 8 to 10% (TS) in batch reactors. Parameter estimation using solver function of the Microsoft Excel Tool Pak revealed that, the second order water diffusion model was superior in predicting biogas production with correlation coefficients ranging from 0.9977 to 0.9995. In addition, the initial surface permeability flux of water (Kspf0) into the organic biomass and fragmentation of particles were observed to be independent events elicited by the action C1 and Cx factors respectively. The initial surface permeability flux of water was observed to increase as solids concentration increased from 8 to 9%TS while, fragmentation constants decreased. Maximum initial surface permeability flux of water (1.78E-05 m3/m2/day) was observed at 9% (TS) with a simultaneous minimization in the fragmentation rate (0.13/day). For optimal production of biofuels, appropriate quantity of C1-factor, the degree of crystallinity and particle size may be critical for efficient conversion.

Suggested Citation

  • Momoh, Yusuf O.L. & Saroj, D.P., 2016. "Development and testing of surface-based and water-based-diffusion kinetic models for studying hydrolysis and biogas production from cow manure," Renewable Energy, Elsevier, vol. 86(C), pages 1113-1122.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:1113-1122
    DOI: 10.1016/j.renene.2015.09.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Panico & Giuseppe D'Antonio & Giovanni Esposito & Luigi Frunzo & Paola Iodice & Francesco Pirozzi, 2014. "The Effect of Substrate-Bulk Interaction on Hydrolysis Modeling in Anaerobic Digestion Process," Sustainability, MDPI, vol. 6(12), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emebu, Samuel & Pecha, Jiří & Janáčová, Dagmar, 2022. "Review on anaerobic digestion models: Model classification & elaboration of process phenomena," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Panaro, D.B. & Frunzo, L. & Mattei, M.R. & Luongo, V. & Esposito, G., 2021. "Calibration, validation and sensitivity analysis of a surface-based ADM1 model," Ecological Modelling, Elsevier, vol. 460(C).
    3. Shen, Jian & Yan, Hu & Zhang, Ruihong & Liu, Guangqing & Chen, Chang, 2018. "Characterization and methane production of different nut residue wastes in anaerobic digestion," Renewable Energy, Elsevier, vol. 116(PA), pages 835-841.
    4. Momoh, O.L.Y. & Ouki, S., 2018. "Development of a novel fractal-like kinetic model for elucidating the effect of particle size on the mechanism of hydrolysis and biogas yield from ligno-cellulosic biomass," Renewable Energy, Elsevier, vol. 118(C), pages 71-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frauke P. C. Müller & Gerd-Christian Maack & Wolfgang Buescher, 2017. "Effects of Biogas Substrate Recirculation on Methane Yield and Efficiency of a Liquid-Manure-Based Biogas Plant," Energies, MDPI, vol. 10(3), pages 1-11, March.
    2. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    3. Marta Dudek & Kacper Świechowski & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    4. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin & Nie, Yongfeng, 2017. "Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion," Energy, Elsevier, vol. 118(C), pages 377-386.
    5. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.

    More about this item

    Keywords

    C1 factor; Hydrolysis; Permeability; Biogas yield; Cow manure; Batch reactor;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:1113-1122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.