IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v77y2015icp174-181.html
   My bibliography  Save this article

Using an Eulerian-granular 2-D multiphase CFD model to simulate oxygen air enriched gasification of agroindustrial residues

Author

Listed:
  • Couto, Nuno
  • Silva, Valter
  • Monteiro, Eliseu
  • Brito, Paulo
  • Rouboa, Abel

Abstract

A 2-D numerical model based on the Computational Fluid Dynamic (CFD) framework was developed to investigate the influence of oxygen-enriched air on a biomass gasification process. Both gas and solid phases were described using and Eulerian–Eulerian approach exchanging mass, energy and momentum. The kinetic theory of granular flow was used to evaluate the constitutive properties of the dispersed phase and the gas phase behavior was simulated employing the k–ε turbulent model. Three experimental runs were performed in order to validate the model. Good agreement was shown between experimental and numerical results. The numerical model also predicted the influence of the oxygen content on the gasification temperature, steam to biomass ratio and on the final syngas composition. It can be observed that the hydrogen and nitrogen molar fractions decrease as a function of the oxygen content and that the carbon dioxide shows the opposite trend. On the other hand, there is only a slight increase of the methane molar fraction. Finally, the effects of both oxygen content and steam to biomass ratio on the cold gas efficiency were studied. It was verified that the cold gas efficiency increases with the oxygen content and decreases slightly with the steam to biomass ratio.

Suggested Citation

  • Couto, Nuno & Silva, Valter & Monteiro, Eliseu & Brito, Paulo & Rouboa, Abel, 2015. "Using an Eulerian-granular 2-D multiphase CFD model to simulate oxygen air enriched gasification of agroindustrial residues," Renewable Energy, Elsevier, vol. 77(C), pages 174-181.
  • Handle: RePEc:eee:renene:v:77:y:2015:i:c:p:174-181
    DOI: 10.1016/j.renene.2014.11.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114008209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirkels, Arjan F. & Verbong, Geert P.J., 2011. "Biomass gasification: Still promising? A 30-year global overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 471-481, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    2. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    3. Couto, Nuno Dinis & Silva, Valter Bruno & Monteiro, Eliseu & Rouboa, Abel, 2015. "Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices," Energy, Elsevier, vol. 93(P1), pages 864-873.
    4. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    5. Cardoso, J. & Silva, V. & Eusébio, D. & Brito, P. & Hall, M.J. & Tarelho, L., 2018. "Comparative scaling analysis of two different sized pilot-scale fluidized bed reactors operating with biomass substrates," Energy, Elsevier, vol. 151(C), pages 520-535.
    6. Ullah, Atta & Hong, Kun & Gao, Yanan & Gungor, Afsin & Zaman, Muhammad, 2019. "An overview of Eulerian CFD modeling and simulation of non-spherical biomass particles," Renewable Energy, Elsevier, vol. 141(C), pages 1054-1066.
    7. Gupta, Saurabh & Choudhary, Shikhar & Kumar, Suraj & De, Santanu, 2021. "Large eddy simulation of biomass gasification in a bubbling fluidized bed based on the multiphase particle-in-cell method," Renewable Energy, Elsevier, vol. 163(C), pages 1455-1466.
    8. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    9. Askaripour, Hossein, 2020. "CFD modeling of gasification process in tapered fluidized bed gasifier," Energy, Elsevier, vol. 191(C).
    10. Ramos, Ana & Rouboa, Abel, 2020. "Syngas production strategies from biomass gasification: Numerical studies for operational conditions and quality indexes," Renewable Energy, Elsevier, vol. 155(C), pages 1211-1221.
    11. Xing, Jiangkuan & Wang, Haiou & Luo, Kun & Wang, Shuai & Bai, Yun & Fan, Jianren, 2019. "Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)," Renewable Energy, Elsevier, vol. 136(C), pages 104-114.
    12. Salem, Ahmed M. & Elsherbiny, Khaled, 2022. "Innovative concept for the effect of changing gasifying medium and injection points on syngas quality: Towards higher H2 production, and Free-CO2 emissions," Energy, Elsevier, vol. 261(PB).
    13. Cardoso, João & Silva, Valter & Eusébio, Daniela & Brito, Paulo & Boloy, Ronney Mancebo & Tarelho, Luís & Silveira, José Luz, 2019. "Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor," Renewable Energy, Elsevier, vol. 131(C), pages 713-729.
    14. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    15. João Cardoso & Valter Silva & Daniela Eusébio & Paulo Brito, 2017. "Hydrodynamic Modelling of Municipal Solid Waste Residues in a Pilot Scale Fluidized Bed Reactor," Energies, MDPI, vol. 10(11), pages 1-20, November.
    16. Gao, Xiaoyan & Xu, Fei & Bao, Fubing & Tu, Chengxu & Zhang, Yaning & Wang, Yingying & Yang, Yang & Li, Bingxi, 2019. "Simulation and optimization of rice husk gasification using intrinsic reaction rate based CFD model," Renewable Energy, Elsevier, vol. 139(C), pages 611-620.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    2. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    3. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    4. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    5. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    6. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    7. Pérez-Fortes, Mar & Laínez-Aguirre, José Miguel & Arranz-Piera, Pol & Velo, Enrique & Puigjaner, Luis, 2012. "Design of regional and sustainable bio-based networks for electricity generation using a multi-objective MILP approach," Energy, Elsevier, vol. 44(1), pages 79-95.
    8. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    9. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Howaniec, Natalia & Smoliński, Adam, 2017. "Biowaste utilization in the process of co-gasification with bituminous coal and lignite," Energy, Elsevier, vol. 118(C), pages 18-23.
    11. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    12. Guan, JianCheng & Zhang, JingJing, 2018. "The dynamics of partner and knowledge portfolios in alternative energy field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2869-2879.
    13. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    14. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    15. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    16. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    17. Zhang, Kai & Chang, Jian & Guan, Yanjun & Chen, Honggang & Yang, Yongping & Jiang, Jianchun, 2013. "Lignocellulosic biomass gasification technology in China," Renewable Energy, Elsevier, vol. 49(C), pages 175-184.
    18. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    19. Goswami, Rohtash & Das, Ranjan, 2020. "Waste heat recovery from a biomass heat engine for thermoelectric power generation using two-phase thermosyphons," Renewable Energy, Elsevier, vol. 148(C), pages 1280-1291.
    20. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:77:y:2015:i:c:p:174-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.