IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp406-413.html
   My bibliography  Save this article

Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea

Author

Listed:
  • Shi, Wei
  • Han, Jonghoon
  • Kim, Changwan
  • Lee, Daeyong
  • Shin, Hyunkyoung
  • Park, Hyunchul

Abstract

Korea has huge potential for offshore wind energy and the first Korean offshore wind farm has been initiated off the southwest coast. With increasing water depth, different substructures of the offshore wind turbine, such as the jacket and multipile, are the increasing focus of attention because they appear to be cost-effective. However, these substructures are still in the early stages of development in the offshore wind industry. The aim of the present study was to design a suitable substructure, such as a jacket or multipile, to support a 5 MW wind turbine in 33 m deep water for the Korean Southwest Offshore Wind Farm. This study also aimed to compare the dynamic responses of different substructures including the monopile, jacket and multipile and evaluate their feasibility. We therefore performed an eigenanalysis and a coupled aero-hydro-servo-elastic simulation under deterministic and stochastic conditions in the environmental conditions in Korea. The results showed that the designed jacket and multipile substructures, together with the modified monopile, were well located at soft–stiff intervals, where most modern utility-scale wind turbine support structures are designed. The dynamic responses of the different substructures showed that of the three substructures, the performance of the jacket was very good. In addition, considering the simple configuration of the multipile, which results in lower manufacturing cost, this substructure can provide another possible solution for Korean’s first offshore wind farm. This study provides knowledge that can be applied for the deployment of large-scale offshore wind turbines in intermediate water depths in Korea.

Suggested Citation

  • Shi, Wei & Han, Jonghoon & Kim, Changwan & Lee, Daeyong & Shin, Hyunkyoung & Park, Hyunchul, 2015. "Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea," Renewable Energy, Elsevier, vol. 74(C), pages 406-413.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:406-413
    DOI: 10.1016/j.renene.2014.08.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114004984
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lozano-Minguez, E. & Kolios, A.J. & Brennan, F.P., 2011. "Multi-criteria assessment of offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 36(11), pages 2831-2837.
    2. Kwon, Soon-Duck, 2010. "Uncertainty analysis of wind energy potential assessment," Applied Energy, Elsevier, vol. 87(3), pages 856-865, March.
    3. Oh, Ki-Yong & Kim, Ji-Young & Lee, Jun-Shin & Ryu, Ki-Wahn, 2012. "Wind resource assessment around Korean Peninsula for feasibility study on 100 MW class offshore wind farm," Renewable Energy, Elsevier, vol. 42(C), pages 217-226.
    4. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    5. Lee, Myung Eun & Kim, Gunwoo & Jeong, Shin-Taek & Ko, Dong Hui & Kang, Keum Seok, 2013. "Assessment of offshore wind energy at Younggwang in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 131-141.
    6. Shi, Wei & Park, Hyunchul & Chung, Chinwha & Baek, Jaeha & Kim, Youngchan & Kim, Changwan, 2013. "Load analysis and comparison of different jacket foundations," Renewable Energy, Elsevier, vol. 54(C), pages 201-210.
    7. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    8. Shi, Wei & Park, Hyunchul & Han, Jonghoon & Na, Sangkwon & Kim, Changwan, 2013. "A study on the effect of different modeling parameters on the dynamic response of a jacket-type offshore wind turbine in the Korean Southwest Sea," Renewable Energy, Elsevier, vol. 58(C), pages 50-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Iida, Kohei & Okumura, Yuta, 2016. "Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism," Energy, Elsevier, vol. 99(C), pages 20-31.
    2. Kwangtae Ha & Jun-Bae Kim & Youngjae Yu & Hyoung-Seock Seo, 2021. "Structural Modeling and Failure Assessment of Spar-Type Substructure for 5 MW Floating Offshore Wind Turbine under Extreme Conditions in the East Sea," Energies, MDPI, vol. 14(20), pages 1-23, October.
    3. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
    5. Oh, Ki-Yong & Nam, Woochul & Ryu, Moo Sung & Kim, Ji-Young & Epureanu, Bogdan I., 2018. "A review of foundations of offshore wind energy convertors: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 16-36.
    6. Yan, Yangtian & Yang, Yang & Bashir, Musa & Li, Chun & Wang, Jin, 2022. "Dynamic analysis of 10 MW offshore wind turbines with different support structures subjected to earthquake loadings," Renewable Energy, Elsevier, vol. 193(C), pages 758-777.
    7. Chang, Byungik & Starcher, Ken, 2019. "Evaluation of wind and solar energy investments in Texas," Renewable Energy, Elsevier, vol. 132(C), pages 1348-1359.
    8. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    9. Thanh-Tuan Tran & Sangkyun Kang & Jang-Ho Lee & Daeyong Lee, 2021. "Directional Bending Performance of 4-Leg Jacket Substructure Supporting a 3MW Offshore Wind Turbine," Energies, MDPI, vol. 14(9), pages 1-17, May.
    10. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yeon-Seung & Choi, Byung-Lyul & Lee, Ji Hyun & Kim, Soo Young & Han, Soonhung, 2014. "Reliability-based design optimization of monopile transition piece for offshore wind turbine system," Renewable Energy, Elsevier, vol. 71(C), pages 729-741.
    2. Shi, Wei & Park, Hyunchul & Han, Jonghoon & Na, Sangkwon & Kim, Changwan, 2013. "A study on the effect of different modeling parameters on the dynamic response of a jacket-type offshore wind turbine in the Korean Southwest Sea," Renewable Energy, Elsevier, vol. 58(C), pages 50-59.
    3. Lee, Yeon-Seung & González, José A. & Lee, Ji Hyun & Kim, Young Il & Park, K.C. & Han, Soonhung, 2016. "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation," Renewable Energy, Elsevier, vol. 85(C), pages 1214-1225.
    4. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    5. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    6. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    7. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    8. Jiang, Dong & Zhuang, Dafang & Huang, Yaohuan & Wang, Jianhua & Fu, Jingying, 2013. "Evaluating the spatio-temporal variation of China's offshore wind resources based on remotely sensed wind field data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 142-148.
    9. Zhao, Xin-gang & Ren, Ling-zhi, 2015. "Focus on the development of offshore wind power in China: Has the golden period come?," Renewable Energy, Elsevier, vol. 81(C), pages 644-657.
    10. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
    11. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    12. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    13. Li, Delei & Geyer, Beate & Bisling, Peter, 2016. "A model-based climatology analysis of wind power resources at 100-m height over the Bohai Sea and the Yellow Sea," Applied Energy, Elsevier, vol. 179(C), pages 575-589.
    14. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    15. Abhinav, K.A. & Saha, Nilanjan, 2017. "Stochastic response of jacket supported offshore wind turbines for varying soil parameters," Renewable Energy, Elsevier, vol. 101(C), pages 550-564.
    16. Sajid Ali & Choon-Man Jang, 2019. "Selection of Best-Suited Wind Turbines for New Wind Farm Sites Using Techno-Economic and GIS Analysis in South Korea," Energies, MDPI, vol. 12(16), pages 1-22, August.
    17. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    18. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
    19. Wang, Xuefei & Yang, Xu & Zeng, Xiangwu, 2017. "Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 1013-1022.
    20. Ali, Sajid & Lee, Sang-Moon & Jang, Choon-Man, 2018. "Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island – Incheon, South Korea," Renewable Energy, Elsevier, vol. 123(C), pages 652-663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:406-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.