IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp326-336.html
   My bibliography  Save this article

Analysis of the short-term overproduction capability of variable speed wind turbines

Author

Listed:
  • Hansen, Anca D.
  • Altin, Müfit
  • Margaris, Ioannis D.
  • Iov, Florin
  • Tarnowski, Germán C.

Abstract

Emphasis in this article is on variable speed wind turbines (VSWTs) capability to provide short-term overproduction and better understanding of VSWTs' mechanical and electrical limits to deliver such support. VSWTs' short-term overproduction capability is of primary concern for the transmission system operators (TSOs) in the process of restoring critical situations during large frequency excursions in power systems with high wind power penetration.

Suggested Citation

  • Hansen, Anca D. & Altin, Müfit & Margaris, Ioannis D. & Iov, Florin & Tarnowski, Germán C., 2014. "Analysis of the short-term overproduction capability of variable speed wind turbines," Renewable Energy, Elsevier, vol. 68(C), pages 326-336.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:326-336
    DOI: 10.1016/j.renene.2014.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannis D. Margaris & Anca D. Hansen & Poul Sørensen & Nikolaos D. Hatziargyriou, 2010. "Illustration of Modern Wind Turbine Ancillary Services," Energies, MDPI, vol. 3(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Desen Kirli & Maximilian Parzen & Aristides Kiprakis, 2021. "Impact of the COVID-19 Lockdown on the Electricity System of Great Britain: A Study on Energy Demand, Generation, Pricing and Grid Stability," Energies, MDPI, vol. 14(3), pages 1-25, January.
    2. Qian Long & Aivaras Celna & Kaushik Das & Poul Sørensen, 2021. "Fast Frequency Support from Hybrid Wind Power Plants Using Supercapacitors," Energies, MDPI, vol. 14(12), pages 1-21, June.
    3. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    4. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    6. Kamal Shahid & Müfit Altin & Lars Møller Mikkelsen & Rasmus Løvenstein Olsen & Florin Iov, 2018. "ICT Based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids," Energies, MDPI, vol. 11(6), pages 1-26, May.
    7. Debanjan, Mukherjee & Karuna, Kalita, 2022. "An Overview of Renewable Energy Scenario in India and its Impact on Grid Inertia and Frequency Response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Hafiz, Faizal & Abdennour, Adel, 2015. "Optimal use of kinetic energy for the inertial support from variable speed wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 629-643.
    9. Hansen, Anca D. & Altin, Müfit & Iov, Florin, 2016. "Provision of enhanced ancillary services from wind power plants – Examples and challenges," Renewable Energy, Elsevier, vol. 97(C), pages 8-18.
    10. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    11. Ana Fernández-Guillamón & Jorge Villena-Lapaz & Antonio Vigueras-Rodríguez & Tania García-Sánchez & Ángel Molina-García, 2018. "An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems," Energies, MDPI, vol. 11(6), pages 1-21, June.
    12. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    13. Dejian Yang & Moses Kang & Eduard Muljadi & Wenzhong Gao & Junhee Hong & Jaeseok Choi & Yong Cheol Kang, 2017. "Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization," Energies, MDPI, vol. 10(11), pages 1-14, November.
    14. Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    16. Hafiz, Faizal & Abdennour, Adel, 2016. "An adaptive neuro-fuzzy inertia controller for variable-speed wind turbines," Renewable Energy, Elsevier, vol. 92(C), pages 136-146.
    17. Müfit Altin & Jan Christian Kuhlmann & Kaushik Das & Anca Daniela Hansen, 2018. "Optimization of Synthetic Inertial Response from Wind Power Plants," Energies, MDPI, vol. 11(5), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    2. Hansen, Anca D. & Altin, Müfit & Iov, Florin, 2016. "Provision of enhanced ancillary services from wind power plants – Examples and challenges," Renewable Energy, Elsevier, vol. 97(C), pages 8-18.
    3. Perica Ilak & Slavko Krajcar & Ivan Rajšl & Marko Delimar, 2014. "Pricing Energy and Ancillary Services in a Day-Ahead Market for a Price-Taker Hydro Generating Company Using a Risk-Constrained Approach," Energies, MDPI, vol. 7(4), pages 1-26, April.
    4. Oscar Barambones, 2012. "Sliding Mode Control Strategy for Wind Turbine Power Maximization," Energies, MDPI, vol. 5(7), pages 1-21, July.
    5. Tania García-Sánchez & Irene Muñoz-Benavente & Emilio Gómez-Lázaro & Ana Fernández-Guillamón, 2020. "Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips," Energies, MDPI, vol. 13(16), pages 1-19, August.
    6. Antonio Colmenar-Santos & Severo Campíez-Romero & Lorenzo Alfredo Enríquez-Garcia & Clara Pérez-Molina, 2014. "Simplified Analysis of the Electric Power Losses for On-Shore Wind Farms Considering Weibull Distribution Parameters," Energies, MDPI, vol. 7(11), pages 1-30, October.
    7. Andrés Bravo Cuesta & Francisco Javier Gomez-Gil & Juan Vicente Martín Fraile & Jesús Ausín Rodríguez & Justo Ruiz Calvo & Jesús Peláez Vara, 2013. "Feasibility of a Simple Small Wind Turbine with Variable-Speed Regulation Made of Commercial Components," Energies, MDPI, vol. 6(7), pages 1-19, July.
    8. Abdul Motin Howlader & Naomitsu Urasaki & Atsushi Yona & Tomonobu Senjyu & Ahmed Yousuf Saber, 2013. "Design and Implement a Digital H∞ Robust Controller for a MW-Class PMSG-Based Grid-Interactive Wind Energy Conversion System," Energies, MDPI, vol. 6(4), pages 1-26, April.
    9. Kamal Shahid & Müfit Altin & Lars Møller Mikkelsen & Rasmus Løvenstein Olsen & Florin Iov, 2018. "ICT Based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids," Energies, MDPI, vol. 11(6), pages 1-26, May.
    10. Dejian Yang & Moses Kang & Eduard Muljadi & Wenzhong Gao & Junhee Hong & Jaeseok Choi & Yong Cheol Kang, 2017. "Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization," Energies, MDPI, vol. 10(11), pages 1-14, November.
    11. Soon-Ryul Nam & Seung-Hwa Kang & Sang-Hee Kang, 2014. "Real-Time Estimation of Power System Frequency Using a Three-Level Discrete Fourier Transform Method," Energies, MDPI, vol. 8(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:326-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.