IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp245-254.html
   My bibliography  Save this article

General study of the control principles and dynamic fault behaviour of variable-speed wind turbine and wind farm generic models

Author

Listed:
  • Abuaisha, Tareq Saber

Abstract

The interest towards generic models or sometimes also called standard models of wind turbine generators (WTGs) is significantly increasing. Mainly due to their improved power quality, better controllability and higher power extraction capability, variable-speed wind turbines driving a synchronous or an induction machine are capturing the global market. Throughout this paper, dynamic modelling and performance analysis of the generic models of the variable-speed WTGs, namely the doubly-fed induction generator and the fully-rated converter based WTGs, are achieved using integration between Matlab/Simulink and PSCAD/EMTDC simulation platforms. Later on, the performance of type-4 wind turbine driving a permanent magnet synchronous machine is analysed during fault and then compared with the case when driving a wound rotor induction machine. The differences in control principles and dynamic fault behaviour are highlighted. Afterwards, investigations on wind farm level are accomplished. A case study during which the developed generic models and the generic model of the variable-speed machine are compared is conducted. Different arrangements for the construction of the generic wind farm are considered.

Suggested Citation

  • Abuaisha, Tareq Saber, 2014. "General study of the control principles and dynamic fault behaviour of variable-speed wind turbine and wind farm generic models," Renewable Energy, Elsevier, vol. 68(C), pages 245-254.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:245-254
    DOI: 10.1016/j.renene.2014.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    2. Hu, Jiabing & Yuan, Xiaoming, 2012. "VSC-based direct torque and reactive power control of doubly fed induction generator," Renewable Energy, Elsevier, vol. 40(1), pages 13-23.
    3. Caliao, Nolan D., 2011. "Dynamic modelling and control of fully rated converter wind turbines," Renewable Energy, Elsevier, vol. 36(8), pages 2287-2297.
    4. Lee, Jaejoon & Son, Eunkuk & Hwang, Byungho & Lee, Soogab, 2013. "Blade pitch angle control for aerodynamic performance optimization of a wind farm," Renewable Energy, Elsevier, vol. 54(C), pages 124-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    2. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    2. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    3. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    4. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    5. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    6. Shukla, Rishabh Dev & Tripathi, Ramesh Kumar & Thakur, Padmanabh, 2017. "DC grid/bus tied DFIG based wind energy system," Renewable Energy, Elsevier, vol. 108(C), pages 179-193.
    7. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    8. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    9. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    10. Wang, Yangwei & Lin, Jiahuan & Zhang, Jun, 2022. "Investigation of a new analytical wake prediction method for offshore floating wind turbines considering an accurate incoming wind flow," Renewable Energy, Elsevier, vol. 185(C), pages 827-849.
    11. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    12. Nikita Tomin, 2023. "Robust Reinforcement Learning-Based Multiple Inputs and Multiple Outputs Controller for Wind Turbines," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    13. Mseddi, Amina & Le Ballois, Sandrine & Aloui, Helmi & Vido, Lionel, 2019. "Robust control of a wind conversion system based on a hybrid excitation synchronous generator: A comparison between H∞ and CRONE controllers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 453-476.
    14. Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús & González Rodríguez, Ángel Gaspar, 2015. "Maximizing the overall production of wind farms by setting the individual operating point of wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 219-229.
    15. Yanwei Jing & Hexu Sun & Lei Zhang & Tieling Zhang, 2017. "Variable Speed Control of Wind Turbines Based on the Quasi-Continuous High-Order Sliding Mode Method," Energies, MDPI, vol. 10(10), pages 1-21, October.
    16. Chen, Jiahao & Hu, Zhiqiang & Liu, Geliang & Wan, Decheng, 2019. "Coupled aero-hydro-servo-elastic methods for floating wind turbines," Renewable Energy, Elsevier, vol. 130(C), pages 139-153.
    17. Deepu Dilip & Fernando Porté-Agel, 2017. "Wind Turbine Wake Mitigation through Blade Pitch Offset," Energies, MDPI, vol. 10(6), pages 1-17, May.
    18. Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.
    19. Ahmet Selim Pehlivan & Beste Bahceci & Kemalettin Erbatur, 2022. "Genetically Optimized Pitch Angle Controller of a Wind Turbine with Fuzzy Logic Design Approach," Energies, MDPI, vol. 15(18), pages 1-15, September.
    20. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:245-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.