IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v59y2013icp82-91.html
   My bibliography  Save this article

Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 3

Author

Listed:
  • McAdam, R.A.
  • Houlsby, G.T.
  • Oldfield, M.L.G.

Abstract

This paper is the third of three, which describe the procedures and results for a set of experiments on various configurations of the Transverse Horizontal Axis Water Turbine (THAWT), which is a horizontally orientated variant of the Darrieus cross-flow turbine. Tests were conducted in the combined wind, wave and current tank at Newcastle University on a 0.5 m diameter rotor, while the flow depth and velocity were varied over a range of realistic Froude numbers for tidal streams. Various configurations of the device were tested to assess the merits of varied blade pitch, rotor solidity, blockage ratio and truss oriented blades. Experiments were carried out using a speed-controlled motor/generator, allowing quasi-steady results to be taken over a range of tip speed ratios. Measurements of power, thrust, blade loading and free surface deformation provide extensive data for future validation of numerical codes and demonstrate the ability of the device to exceed the Lanchester–Betz limit for kinetic efficiency by using high blockage. This paper covers the instrumentation, hydrodynamic performance and loading of the truss bladed variant of the THAWT device. The first paper covers the experimental setup and hydrodynamic performance of the parallel bladed rotor and the second paper covers the instrumentation and hydrodynamic loading of the parallel bladed rotor.

Suggested Citation

  • McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 3," Renewable Energy, Elsevier, vol. 59(C), pages 82-91.
  • Handle: RePEc:eee:renene:v:59:y:2013:i:c:p:82-91
    DOI: 10.1016/j.renene.2013.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113001687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bryden, I.G & Naik, S & Fraenkel, P & Bullen, C.R, 1998. "Matching tidal current plants to local flow conditions," Energy, Elsevier, vol. 23(9), pages 699-709.
    2. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 2," Renewable Energy, Elsevier, vol. 59(C), pages 141-149.
    3. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 1," Renewable Energy, Elsevier, vol. 59(C), pages 105-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 2," Renewable Energy, Elsevier, vol. 59(C), pages 141-149.
    2. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    3. Stringer, R.M. & Hillis, A.J. & Zang, J., 2016. "Numerical investigation of laboratory tested cross-flow tidal turbines and Reynolds number scaling," Renewable Energy, Elsevier, vol. 85(C), pages 1316-1327.
    4. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    5. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Benchikh Le Hocine, Alla Eddine & Jay Lacey, R.W. & Poncet, Sébastien, 2019. "Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine," Renewable Energy, Elsevier, vol. 143(C), pages 1890-1901.
    7. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 1," Renewable Energy, Elsevier, vol. 59(C), pages 105-114.
    8. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 1," Renewable Energy, Elsevier, vol. 59(C), pages 105-114.
    4. Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
    5. Kinsey, Thomas & Dumas, Guy, 2017. "Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines," Renewable Energy, Elsevier, vol. 103(C), pages 239-254.
    6. Benchikh Le Hocine, Alla Eddine & Jay Lacey, R.W. & Poncet, Sébastien, 2019. "Multiphase modeling of the free surface flow through a Darrieus horizontal axis shallow-water turbine," Renewable Energy, Elsevier, vol. 143(C), pages 1890-1901.
    7. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    8. Stringer, R.M. & Hillis, A.J. & Zang, J., 2016. "Numerical investigation of laboratory tested cross-flow tidal turbines and Reynolds number scaling," Renewable Energy, Elsevier, vol. 85(C), pages 1316-1327.
    9. Esteban Ferrer & Oliver M.F. Browne & Eusebio Valero, 2017. "Sensitivity Analysis to Control the Far-Wake Unsteadiness Behind Turbines," Energies, MDPI, vol. 10(10), pages 1-21, October.
    10. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    11. Mason-Jones, A. & O'Doherty, D.M. & Morris, C.E. & O'Doherty, T. & Byrne, C.B. & Prickett, P.W. & Grosvenor, R.I. & Owen, I. & Tedds, S. & Poole, R.J., 2012. "Non-dimensional scaling of tidal stream turbines," Energy, Elsevier, vol. 44(1), pages 820-829.
    12. Fan, YaJun & Mu, AnLe & Ma, Tao, 2016. "Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator," Energy, Elsevier, vol. 112(C), pages 188-199.
    13. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    14. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    15. Brown, S.A. & Ransley, E.J. & Xie, N. & Monk, K. & De Angelis, G.M. & Nicholls-Lee, R. & Guerrini, E. & Greaves, D.M., 2021. "On the impact of motion-thrust coupling in floating tidal energy applications," Applied Energy, Elsevier, vol. 282(PB).
    16. Díaz, H. & Rodrigues, J.M. & Guedes Soares, C., 2020. "Preliminary assessment of a tidal test site on the Minho estuary," Renewable Energy, Elsevier, vol. 158(C), pages 642-655.
    17. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    18. Chernin, Leon & Val, Dimitri V., 2017. "Probabilistic prediction of cavitation on rotor blades of tidal stream turbines," Renewable Energy, Elsevier, vol. 113(C), pages 688-696.
    19. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    20. Bryden, I.G & Macfarlane, D.M, 2000. "The utilisation of short term energy storage with tidal current generation systems," Energy, Elsevier, vol. 25(9), pages 893-907.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:59:y:2013:i:c:p:82-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.