IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v55y2013icp480-489.html
   My bibliography  Save this article

Wave energy resource assessment in Lanzarote (Spain)

Author

Listed:
  • Sierra, J.P.
  • González-Marco, D.
  • Sospedra, J.
  • Gironella, X.
  • Mösso, C.
  • Sánchez-Arcilla, A.

Abstract

Lanzarote (Canary Islands, Spain) is a UNESCO Biosphere Reserve (since 1993) located in the Atlantic Ocean. The island is aiming to change its energy production model in order to reduce its dependence on external, fossil-fuel-based energy sources. The local authorities hope to develop an energy production model based on clean, renewable sources, such as wave energy converters (WECs). This study analyses the island's wave energy resources using a 51-year series of data obtained from numerical modelling (hindcast and forecast). The spatial distribution of wave power is analysed using data from nine points around the island. Significant resources (average wave power exceeding 30 kW/m and average annual wave energy of more than 270 MW h/m) are found to the north of the island, as well as to the west and the east (average wave power 25–30 kW/m). Considerable seasonal variability is found, with winters being rather high-energetic and summers quite mild. Variability coefficients are computed in order to select the best locations for WECs; the composition of the resource at each location is examined in terms of sea states in order to evaluate the suitability of WEC installation. Finally, three sites with similar conditions, all located on the north side of the island, are selected as the best candidates for WEC deployment.

Suggested Citation

  • Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
  • Handle: RePEc:eee:renene:v:55:y:2013:i:c:p:480-489
    DOI: 10.1016/j.renene.2013.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113000293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palha, Artur & Mendes, Lourenço & Fortes, Conceição Juana & Brito-Melo, Ana & Sarmento, António, 2010. "The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices," Renewable Energy, Elsevier, vol. 35(1), pages 62-77.
    2. Boronowski, Susan & Wild, Peter & Rowe, Andrew & Cornelis van Kooten, G., 2010. "Integration of wave power in Haida Gwaii," Renewable Energy, Elsevier, vol. 35(11), pages 2415-2421.
    3. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    4. Iglesias, G. & López, M. & Carballo, R. & Castro, A. & Fraguela, J.A. & Frigaard, P., 2009. "Wave energy potential in Galicia (NW Spain)," Renewable Energy, Elsevier, vol. 34(11), pages 2323-2333.
    5. Dalton, G.J. & Alcorn, R. & Lewis, T., 2012. "A 10 year installation program for wave energy in Ireland: A case study sensitivity analysis on financial returns," Renewable Energy, Elsevier, vol. 40(1), pages 80-89.
    6. Behrens, Sam & Hayward, Jennifer & Hemer, Mark & Osman, Peter, 2012. "Assessing the wave energy converter potential for Australian coastal regions," Renewable Energy, Elsevier, vol. 43(C), pages 210-217.
    7. Arinaga, Randi A. & Cheung, Kwok Fai, 2012. "Atlas of global wave energy from 10 years of reanalysis and hindcast data," Renewable Energy, Elsevier, vol. 39(1), pages 49-64.
    8. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    9. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    10. Elwood, David & Yim, Solomon C. & Prudell, Joe & Stillinger, Chad & von Jouanne, Annette & Brekken, Ted & Brown, Adam & Paasch, Robert, 2010. "Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off," Renewable Energy, Elsevier, vol. 35(2), pages 348-354.
    11. Smith, Helen C.M. & Pearce, Charles & Millar, Dean L., 2012. "Further analysis of change in nearshore wave climate due to an offshore wave farm: An enhanced case study for the Wave Hub site," Renewable Energy, Elsevier, vol. 40(1), pages 51-64.
    12. Iglesias, G. & Carballo, R., 2010. "Wave energy resource in the Estaca de Bares area (Spain)," Renewable Energy, Elsevier, vol. 35(7), pages 1574-1584.
    13. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    14. Henfridsson, Urban & Neimane, Viktoria & Strand, Kerstin & Kapper, Robert & Bernhoff, Hans & Danielsson, Oskar & Leijon, Mats & Sundberg, Jan & Thorburn, Karin & Ericsson, Ellerth & Bergman, Karl, 2007. "Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak," Renewable Energy, Elsevier, vol. 32(12), pages 2069-2084.
    15. Ozkop, Emre & Altas, Ismail H. & Sharaf, Adel M., 2012. "A novel switched power filter-green plug (SPF-GP) scheme for wave energy systems," Renewable Energy, Elsevier, vol. 44(C), pages 340-358.
    16. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.
    17. Rusu, Eugen & Guedes Soares, C., 2012. "Wave energy pattern around the Madeira Islands," Energy, Elsevier, vol. 45(1), pages 771-785.
    18. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2009. "Wave power potential along the Atlantic coast of the southeastern USA," Renewable Energy, Elsevier, vol. 34(10), pages 2197-2205.
    19. Saulnier, Jean-Baptiste & Prevosto, Marc & Maisondieu, Christophe, 2011. "Refinements of sea state statistics for marine renewables: A case study from simultaneous buoy measurements in Portugal," Renewable Energy, Elsevier, vol. 36(11), pages 2853-2865.
    20. Ahn, K.K. & Truong, D.Q. & Tien, Hoang Huu & Yoon, Jong Il, 2012. "An innovative design of wave energy converter," Renewable Energy, Elsevier, vol. 42(C), pages 186-194.
    21. Lenee-Bluhm, Pukha & Paasch, Robert & Özkan-Haller, H. Tuba, 2011. "Characterizing the wave energy resource of the US Pacific Northwest," Renewable Energy, Elsevier, vol. 36(8), pages 2106-2119.
    22. Kim, Gunwoo & Jeong, Weon Mu & Lee, Kwang Soo & Jun, Kicheon & Lee, Myung Eun, 2011. "Offshore and nearshore wave energy assessment around the Korean Peninsula," Energy, Elsevier, vol. 36(3), pages 1460-1469.
    23. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    24. Dunnett, David & Wallace, James S., 2009. "Electricity generation from wave power in Canada," Renewable Energy, Elsevier, vol. 34(1), pages 179-195.
    25. Iglesias, G. & Carballo, R., 2010. "Offshore and inshore wave energy assessment: Asturias (N Spain)," Energy, Elsevier, vol. 35(5), pages 1964-1972.
    26. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    2. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    3. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    4. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    5. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    6. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    7. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    8. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    9. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    10. Akpınar, Adem & Kömürcü, Murat İhsan, 2012. "Wave energy potential along the south-east coasts of the Black Sea," Energy, Elsevier, vol. 42(1), pages 289-302.
    11. Akpınar, Adem & Kömürcü, Murat İhsan, 2013. "Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data," Applied Energy, Elsevier, vol. 101(C), pages 502-512.
    12. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    13. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    14. Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
    15. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    16. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    17. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    18. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    19. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    20. Wu, Shuping & Liu, Chuanyu & Chen, Xinping, 2015. "Offshore wave energy resource assessment in the East China Sea," Renewable Energy, Elsevier, vol. 76(C), pages 628-636.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:55:y:2013:i:c:p:480-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.