IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v53y2013icp60-70.html
   My bibliography  Save this article

Life cycle assessment of an onshore wind farm located at the northeastern coast of Brazil

Author

Listed:
  • Oebels, Kerstin B.
  • Pacca, Sergio

Abstract

This article assesses the life cycle emissions of a fictive onshore wind power station consisting of 141.5-MW wind turbines situated on the northeastern coast of Brazil. The objective is to identify the main sources of CO2(eq)-emissions during the life cycle of the wind farm. The novelty of this work lies in the focus on Brazil and its emerging national manufacturing industry. With an electricity matrix that is primarily based on renewable energy sources (87% in 2010), this country emits eight times less CO2 for the production of 1 kWh of electricity than the global average. Although this fact jeopardizes the CO2 mitigation potential of wind power projects, it also reduces the carbon footprint of parts and components manufactured in Brazil. The analysis showed that reduced CO2-emissions in the material production stage and the low emissions of the component production stage led to a favorable CO2-intensity of 7.1 g CO2/kWh. The bulk of the emissions, a share of over 90%, were unambiguously caused by the production stage, and the transportation stage was responsible for another 6% of the CO2-emissions. The small contributions from the construction and operation phases could be neglected. Within the manufacturing process, the steel tower was identified as the source responsible for more than half of the emissions. The environmental impacts of the wind farm are small in terms of CO2-emissions, which can be credited to a green electricity mix. This scenario presents an advantage for the country and for further production sites, particularly in the surroundings of the preferred wind farm sites in Brazil, which should be favored to reduce CO2 emissions to an even greater extent.

Suggested Citation

  • Oebels, Kerstin B. & Pacca, Sergio, 2013. "Life cycle assessment of an onshore wind farm located at the northeastern coast of Brazil," Renewable Energy, Elsevier, vol. 53(C), pages 60-70.
  • Handle: RePEc:eee:renene:v:53:y:2013:i:c:p:60-70
    DOI: 10.1016/j.renene.2012.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.10.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lenzen, Manfred & Wachsmann, Ulrike, 2004. "Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment," Applied Energy, Elsevier, vol. 77(2), pages 119-130, February.
    2. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    3. Guezuraga, Begoña & Zauner, Rudolf & Pölz, Werner, 2012. "Life cycle assessment of two different 2 MW class wind turbines," Renewable Energy, Elsevier, vol. 37(1), pages 37-44.
    4. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
    5. Tremeac, Brice & Meunier, Francis, 2009. "Life cycle analysis of 4.5Â MW and 250Â W wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2104-2110, October.
    6. Martínez, E. & Sanz, F. & Pellegrini, S. & Jiménez, E. & Blanco, J., 2009. "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 667-673.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    2. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    3. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    4. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    5. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    6. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    7. Kaldellis, J.K. & Zafirakis, D. & Stavropoulou, V. & Kaldelli, El., 2012. "Optimum wind- and photovoltaic-based stand-alone systems on the basis of life cycle energy analysis," Energy Policy, Elsevier, vol. 50(C), pages 345-357.
    8. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    9. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    10. Dijkman, T.J. & Benders, R.M.J., 2010. "Comparison of renewable fuels based on their land use using energy densities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3148-3155, December.
    11. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    12. Xiaohang Wang & Wentong Chong & Kokhoe Wong & Saihin Lai & Liphuat Saw & Xianbo Xiang & Chin-Tsan Wang, 2019. "Preliminary Techno–Environment–Economic Evaluation of an Innovative Hybrid Renewable Energy Harvester System for Residential Application," Energies, MDPI, vol. 12(8), pages 1-28, April.
    13. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    14. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    15. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    16. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    17. Nagashima, Shin & Uchiyama, Yohji & Okajima, Keiichi, 2017. "Hybrid input–output table method for socioeconomic and environmental assessment of a wind power generation system," Applied Energy, Elsevier, vol. 185(P2), pages 1067-1075.
    18. Michaela Gkantou & Carlos Rebelo & Charalampos Baniotopoulos, 2020. "Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers," Energies, MDPI, vol. 13(15), pages 1-21, August.
    19. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.
    20. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:53:y:2013:i:c:p:60-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.