IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp333-343.html
   My bibliography  Save this article

DFIG equivalent circuit and mismatch assessment between manufacturer and experimental power-wind speed curves

Author

Listed:
  • Spertino, Filippo
  • Di Leo, Paolo
  • Ilie, Irinel-Sorin
  • Chicco, Gianfranco

Abstract

The modelling of wind turbines with doubly-fed induction generator (DFIG) requires consideration of overall aerodynamic, mechanic, electromagnetic and control aspects, even in the case of DFIG representation in steady-state conditions for energy production assessment. This paper firstly summarizes the background concepts for interpreting the characteristic curves of the DFIG. Then, it considers and illustrates the structure and use of a dedicated equivalent circuit based on the incorporation of an apparent resistance in the model. Furthermore, a new method for correcting the experimental data gathered from wind turbines in practical applications is proposed, in order to make these data comparable with the quantities indicated by the manufacturers in the power-wind speed curve of the wind turbines. Application examples are provided by using data of real DFIG machines.

Suggested Citation

  • Spertino, Filippo & Di Leo, Paolo & Ilie, Irinel-Sorin & Chicco, Gianfranco, 2012. "DFIG equivalent circuit and mismatch assessment between manufacturer and experimental power-wind speed curves," Renewable Energy, Elsevier, vol. 48(C), pages 333-343.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:333-343
    DOI: 10.1016/j.renene.2012.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112000134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thapar, Vinay & Agnihotri, Gayatri & Sethi, Vinod Krishna, 2011. "Critical analysis of methods for mathematical modelling of wind turbines," Renewable Energy, Elsevier, vol. 36(11), pages 3166-3177.
    2. Hall, John F. & Mecklenborg, Christine A. & Chen, Dongmei & Pratap, Siddharth B., 2011. "Wind energy conversion with a variable-ratio gearbox: design and analysis," Renewable Energy, Elsevier, vol. 36(3), pages 1075-1080.
    3. Arabian-Hoseynabadi, H. & Oraee, H. & Tavner, P.J., 2010. "Wind turbine productivity considering electrical subassembly reliability," Renewable Energy, Elsevier, vol. 35(1), pages 190-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    2. Daniel Ambach & Robert Garthoff, 2016. "Vorhersagen der Windgeschwindigkeit und Windenergie in Deutschland," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 15-36, February.
    3. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    4. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    5. Kamel, Rashad M., 2014. "Employing two novel mechanical fault ride through controllers for keeping stability of fixed speed wind generation systems hosted by standalone micro-grid," Applied Energy, Elsevier, vol. 116(C), pages 398-408.
    6. Francesco Bottiglione & Giacomo Mantriota & Marco Valle, 2018. "Power-Split Hydrostatic Transmissions for Wind Energy Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    7. Marino Marrocu & Luca Massidda, 2017. "A Simple and Effective Approach for the Prediction of Turbine Power Production From Wind Speed Forecast," Energies, MDPI, vol. 10(12), pages 1-14, November.
    8. Pereira, Luan D.L. & Yahyaoui, Imene & Fiorotti, Rodrigo & de Menezes, Luíza S. & Fardin, Jussara F. & Rocha, Helder R.O. & Tadeo, Fernando, 2022. "Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations," Applied Energy, Elsevier, vol. 307(C).
    9. Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
    10. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
    11. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    12. Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).
    13. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    14. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    15. Gao, Renbo & Wu, Fei & Zou, Quanle & Chen, Jie, 2022. "Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China," Energy, Elsevier, vol. 243(C).
    16. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    17. Ouyang, Tinghui & Kusiak, Andrew & He, Yusen, 2017. "Modeling wind-turbine power curve: A data partitioning and mining approach," Renewable Energy, Elsevier, vol. 102(PA), pages 1-8.
    18. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "Electrical hubs: An effective way to integrate non-dispatchable renewable energy sources with minimum impact to the grid," Applied Energy, Elsevier, vol. 190(C), pages 232-248.
    19. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
    20. Robert Kasner & Weronika Kruszelnicka & Patrycja Bałdowska-Witos & Józef Flizikowski & Andrzej Tomporowski, 2020. "Sustainable Wind Power Plant Modernization," Energies, MDPI, vol. 13(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:333-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.