IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i6p1266-1274.html
   My bibliography  Save this article

A qualitative examination of performance and energy yield of photovoltaic modules in southern Norway

Author

Listed:
  • Midtgard, Ole-Morten
  • Sætre, Tor Oskar
  • Yordanov, Georgi
  • Imenes, Anne Gerd
  • Nge, Chee Lim

Abstract

Three different, commercially available photovoltaic modules have been monitored outdoors in the town of Grimstad, Norway. The present paper describes the experimental setup that was implemented, in particular details of the low-cost electronic loads. Results compare measured performance with manufacturer's data, and temperature measurements enable a comparison with performance at standard test condition temperature. Overall, the monocrystalline module performed best both regarding maximum efficiency and overall energy production, whereas the module based on triple junction amorphous silicon technology had the worst performance considering these criteria. The gross numbers of energy yield corresponding to measurements over a whole year show that photovoltaic technology could become a viable alternative also in a Northern country like Norway.

Suggested Citation

  • Midtgard, Ole-Morten & Sætre, Tor Oskar & Yordanov, Georgi & Imenes, Anne Gerd & Nge, Chee Lim, 2010. "A qualitative examination of performance and energy yield of photovoltaic modules in southern Norway," Renewable Energy, Elsevier, vol. 35(6), pages 1266-1274.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:6:p:1266-1274
    DOI: 10.1016/j.renene.2009.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109005382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Dyk, E.E & Meyer, E.L & Vorster, F.J & Leitch, A.W.R, 2002. "Long-term monitoring of photovoltaic devices," Renewable Energy, Elsevier, vol. 25(2), pages 183-197.
    2. Gxasheka, A.R. & van Dyk, E.E. & Meyer, E.L., 2005. "Evaluation of performance parameters of PV modules deployed outdoors," Renewable Energy, Elsevier, vol. 30(4), pages 611-620.
    3. Meyer, E.L & van Dyk, E.E, 2003. "Characterization of degradation in thin-film photovoltaic module performance parameters," Renewable Energy, Elsevier, vol. 28(9), pages 1455-1469.
    4. Sadok, Mohammed & Mehdaoui, Ahmed, 2008. "Outdoor testing of photovoltaic arrays in the Saharan region," Renewable Energy, Elsevier, vol. 33(12), pages 2516-2524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Yan & Lindkvist, Carmel Margaret & Temeljotov-Salaj, Alenka, 2021. "Barriers and potential solutions to the diffusion of solar photovoltaics from the public-private-people partnership perspective – Case study of Norway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Lamont, Lisa A. & El Chaar, Lana, 2011. "Enhancement of a stand-alone photovoltaic system’s performance: Reduction of soft and hard shading," Renewable Energy, Elsevier, vol. 36(4), pages 1306-1310.
    3. Syed Zahurul Islam & Mohammad Lutfi Othman & Muhammad Saufi & Rosli Omar & Arash Toudeshki & Syed Zahidul Islam, 2020. "Photovoltaic modules evaluation and dry-season energy yield prediction model for NEM in Malaysia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-25, November.
    4. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    5. Hai Lan & Jinfeng Dai & Shuli Wen & Ying-Yi Hong & David C. Yu & Yifei Bai, 2015. "Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship," Energies, MDPI, vol. 8(10), pages 1-16, October.
    6. Celik, Berk & Karatepe, Engin & Gokmen, Nuri & Silvestre, Santiago, 2013. "A virtual reality study of surrounding obstacles on BIPV systems for estimation of long-term performance of partially shaded PV arrays," Renewable Energy, Elsevier, vol. 60(C), pages 402-414.
    7. Yordanov, Georgi Hristov & Midtgård, Ole-Morten & Saetre, Tor Oskar, 2012. "Series resistance determination and further characterization of c-Si PV modules," Renewable Energy, Elsevier, vol. 46(C), pages 72-80.
    8. Chen, Cheng-Chuan & Chang, Hong-Chan & Kuo, Cheng-Chien & Lin, Chien-Chin, 2013. "Programmable energy source emulator for photovoltaic panels considering partial shadow effect," Energy, Elsevier, vol. 54(C), pages 174-183.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    2. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    3. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    4. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    5. Kichou, Sofiane & Silvestre, Santiago & Nofuentes, Gustavo & Torres-Ramírez, Miguel & Chouder, Aissa & Guasch, Daniel, 2016. "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure," Energy, Elsevier, vol. 96(C), pages 231-241.
    6. Hussin, M.Z. & Shaari, S. & Omar, A.M. & Zain, Z.M., 2015. "Amorphous silicon thin-film: Behaviour of light-induced degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 388-402.
    7. Carrero, C. & Amador, J. & Arnaltes, S., 2007. "A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, Elsevier, vol. 32(15), pages 2579-2589.
    8. Le Phuong Truong & Hoang An Quoc & Huan-Liang Tsai & Do Van Dung, 2020. "A Method to Estimate and Analyze the Performance of a Grid-Connected Photovoltaic Power Plant," Energies, MDPI, vol. 13(10), pages 1-17, May.
    9. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    10. Bouraiou, Ahmed & Hamouda, Messaoud & Chaker, Abdelkader & Lachtar, Salah & Neçaibia, Ammar & Boutasseta, Nadir & Mostefaoui, Mohammed, 2017. "Experimental evaluation of the performance and degradation of single crystalline silicon photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 132(C), pages 22-30.
    11. Mateo, C. & Hernández-Fenollosa, M.A. & Montero, Á. & Seguí-Chilet, S., 2018. "Analysis of initial stabilization of cell efficiency in amorphous silicon photovoltaic modules under real outdoor conditions," Renewable Energy, Elsevier, vol. 120(C), pages 114-125.
    12. Rahman, Md Momtazur & Khan, Imran & Alameh, Kamal, 2021. "Potential measurement techniques for photovoltaic module failure diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    14. van Dyk, E.E. & Meyer, E.L., 2004. "Analysis of the effect of parasitic resistances on the performance of photovoltaic modules," Renewable Energy, Elsevier, vol. 29(3), pages 333-344.
    15. Siddiqui, Rahnuma & Kumar, Rajesh & Jha, Gopal Kumar & Gowri, Ganesh & Morampudi, Manoj & Rajput, Pragati & Lata, Sneh & Agariya, Swati & Dubey, Bharat & Nanda, Gayatri & Raghava, Sykam Sahan, 2016. "Comparison of different technologies for solar PV (Photovoltaic) outdoor performance using indoor accelerated aging tests for long term reliability," Energy, Elsevier, vol. 107(C), pages 550-561.
    16. Sharma, Rakhi & Tiwari, G.N., 2012. "Technical performance evaluation of stand-alone photovoltaic array for outdoor field conditions of New Delhi," Applied Energy, Elsevier, vol. 92(C), pages 644-652.
    17. Agroui, K. & Collins, G. & Farenc, J., 2012. "Measurement of glass transition temperature of crosslinked EVA encapsulant by thermal analysis for photovoltaic application," Renewable Energy, Elsevier, vol. 43(C), pages 218-223.
    18. Chandel, S.S. & Nagaraju Naik, M. & Sharma, Vikrant & Chandel, Rahul, 2015. "Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India," Renewable Energy, Elsevier, vol. 78(C), pages 193-202.
    19. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    20. Gulkowski, Slawomir & Muñoz Diez, José Vicente & Aguilera Tejero, Jorge & Nofuentes, Gustavo, 2019. "Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions," Energy, Elsevier, vol. 172(C), pages 380-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:6:p:1266-1274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.