IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i4p697-712.html
   My bibliography  Save this article

Experimental thermodynamic cycles and performance analysis of a solar-powered adsorptive icemaker in hot humid climate

Author

Listed:
  • Leite, Antonio Pralon Ferreira
  • Grilo, Marcelo Bezerra
  • Andrade, Rodrigo Ronelli Duarte
  • Belo, Francisco Antonio
  • Meunier, Francis

Abstract

This paper analyzes and presents the thermodynamic cycles and the experimental performance parameters of a solar adsorptive icemaker that uses activated-carbon methanol pair. The solar energy technology employed is far less sophisticated than that of collectors using selective surface or evacuated tubes. The collector-adsorber is multi-tubular with an opaque black radiation-absorbing surface, and thermal insulated by means of transparent covers, the so-called transparent insulation material (TIM). The solar radiation hits on both faces of the tubes by means of semi-cylindrical reflectors. It is shown the results of tests carried out in a region of Brazil close to the Equator, on days characterized by the predominant cloud cover degree. Three cycles have been analyzed: one with clear sky, another with partially cloudy sky, and a third under entirely cloudy sky. The maximum regenerating temperatures were 100.1, 87.3 and 92.7°C, with an ice production of 6.05, 2.10 and 0kg by square meter of projected area, for cycles of clear sky, partially cloudy and overcast nights, respectively.

Suggested Citation

  • Leite, Antonio Pralon Ferreira & Grilo, Marcelo Bezerra & Andrade, Rodrigo Ronelli Duarte & Belo, Francisco Antonio & Meunier, Francis, 2007. "Experimental thermodynamic cycles and performance analysis of a solar-powered adsorptive icemaker in hot humid climate," Renewable Energy, Elsevier, vol. 32(4), pages 697-712.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:4:p:697-712
    DOI: 10.1016/j.renene.2006.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106000723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tangkengsirisin, Vichan & Kanzawa, Atsushi & Watanabe, Takayuki, 1998. "A solar-powered adsorption cooling system using a silica gel–water mixture," Energy, Elsevier, vol. 23(5), pages 347-353.
    2. Leite, A.P.F. & Grilo, M.B. & Belo, F.A. & Andrade, R.R.D., 2004. "Dimensioning, thermal analysis and experimental heat loss coefficients of an adsorptive solar icemaker," Renewable Energy, Elsevier, vol. 29(10), pages 1643-1663.
    3. Critoph, R.E., 1994. "An ammonia carbon solar refrigerator for vaccine cooling," Renewable Energy, Elsevier, vol. 5(1), pages 502-508.
    4. Boubakri, A, 2003. "A new conception of an adsorptive solar-powered ice maker," Renewable Energy, Elsevier, vol. 28(5), pages 831-842.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Chong & Wang, Yunfeng & Li, Ming & Zhao, Wenkui & Li, Xuejuan & Yu, Qiongfen & Huang, Mengxiao, 2020. "Impact of three different enhancing mass transfer operating characteristics on a solar adsorption refrigeration system with compound parabolic concentrator," Renewable Energy, Elsevier, vol. 152(C), pages 1354-1366.
    2. Gordeeva, Larisa G. & Solovyeva, Marina V. & Aristov, Yuri I., 2016. "NH2-MIL-125 as a promising material for adsorptive heat transformation and storage," Energy, Elsevier, vol. 100(C), pages 18-24.
    3. Gordeeva, Larisa & Aristov, Yuri, 2014. "Dynamic study of methanol adsorption on activated carbon ACM-35.4 for enhancing the specific cooling power of adsorptive chillers," Applied Energy, Elsevier, vol. 117(C), pages 127-133.
    4. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    5. Li, C. & Wang, R.Z. & Wang, L.W. & Li, T.X. & Chen, Y., 2013. "Experimental study on an adsorption icemaker driven by parabolic trough solar collector," Renewable Energy, Elsevier, vol. 57(C), pages 223-233.
    6. Islam, Md. Parvez & Morimoto, Tetsuo, 2014. "A new zero energy cool chamber with a solar-driven adsorption refrigerator," Renewable Energy, Elsevier, vol. 72(C), pages 367-376.
    7. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    8. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    2. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    3. Boubakri, A., 2006. "Performance of an adsorptive solar ice maker operating with a single double function heat exchanger (evaporator/condenser)," Renewable Energy, Elsevier, vol. 31(11), pages 1799-1812.
    4. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    5. Leite, A.P.F. & Grilo, M.B. & Belo, F.A. & Andrade, R.R.D., 2004. "Dimensioning, thermal analysis and experimental heat loss coefficients of an adsorptive solar icemaker," Renewable Energy, Elsevier, vol. 29(10), pages 1643-1663.
    6. Brites, G.J.V.N. & Costa, J.J. & Costa, V.A.F., 2016. "Influence of the design parameters on the overall performance of a solar adsorption refrigerator," Renewable Energy, Elsevier, vol. 86(C), pages 238-250.
    7. El Fadar, A. & Mimet, A. & Pérez-García, M., 2009. "Study of an adsorption refrigeration system powered by parabolic trough collector and coupled with a heat pipe," Renewable Energy, Elsevier, vol. 34(10), pages 2271-2279.
    8. González, Manuel I. & Rodríguez, Luis R. & Lucio, Jesús H., 2009. "Evaluation of thermal parameters and simulation of a solar-powered, solid-sorption chiller with a CPC collector," Renewable Energy, Elsevier, vol. 34(3), pages 570-577.
    9. Li, C. & Wang, R.Z. & Wang, L.W. & Li, T.X. & Chen, Y., 2013. "Experimental study on an adsorption icemaker driven by parabolic trough solar collector," Renewable Energy, Elsevier, vol. 57(C), pages 223-233.
    10. Lucia, Umberto, 2013. "Adsorber efficiency in adsorbtion refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 570-575.
    11. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
    12. Hassan, H.Z. & Mohamad, A.A. & Al-Ansary, H.A. & Alyousef, Y.M., 2014. "Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle," Energy, Elsevier, vol. 77(C), pages 852-858.
    13. Louajari, Mohamed & Mimet, Abdelaziz & Ouammi, Ahmed, 2011. "Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon-ammonia pair," Applied Energy, Elsevier, vol. 88(3), pages 690-698, March.
    14. Critoph, R.E. & Tamainot-Telto, Z. & Munyebvu, E., 1997. "Solar sorption refrigerator," Renewable Energy, Elsevier, vol. 12(4), pages 409-417.
    15. Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.
    16. Critoph, R.E., 1999. "Rapid cycling solar/biomass powered adsorption refrigeration system," Renewable Energy, Elsevier, vol. 16(1), pages 673-678.
    17. Li, C.H. & Wang, R.Z. & Dai, Y.J., 2003. "Simulation and economic analysis of a solar-powered adsorption refrigerator using an evacuated tube for thermal insulation," Renewable Energy, Elsevier, vol. 28(2), pages 249-269.
    18. Alghoul, M.A. & Sulaiman, M.Y. & Sopian, K. & Azmi, B.Z., 2009. "Performance of a dual-purpose solar continuous adsorption system," Renewable Energy, Elsevier, vol. 34(3), pages 920-927.
    19. Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
    20. Michel Pons, 2019. "Exergy Analysis and Process Optimization with Variable Environment Temperature," Energies, MDPI, vol. 12(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:4:p:697-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.