IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i9p1309-1327.html
   My bibliography  Save this article

Efficiency investigation of a new-design air solar plate collector used in a humidification–dehumidification desalination process

Author

Listed:
  • Ben-Amara, Mahmoud
  • Houcine, Imed
  • Guizani, Aman-Allah
  • Maalej, Mohammed

Abstract

The aim of this research is to experimentally study the efficiency of a new-design plate collector used to heat air in a new desalination humidification–dehumidification process. In fact, in such processes, the air solar collectors work at unusual experimental parameters (forced convection, elevated air humidity, high solar irradiation…). At these stressed experimental conditions, few published works are available in literature. Furthermore, the comparison of the efficiency of collectors running with normal air humidity content (about 10–20gkg−1) and air of elevated humidity (20–50gkg−1) were not yet published as our knowledge. In the present investigation, a new air solar plate collector was designed and developed for its use in a desalination process. Moreover, a characterization of such collector was performed under different experimental conditions. The effect of different parameters, namely: the solar radiation, the wind velocity, the ambient temperature, the air mass flow rate, the inlet air humidity and temperature, on the collector efficiency was also investigated. The collector was optimized for its use in a new solar desalination process. In fact, the air solar collector was designed in order to lower its economic cost making them applicable for water desalination.

Suggested Citation

  • Ben-Amara, Mahmoud & Houcine, Imed & Guizani, Aman-Allah & Maalej, Mohammed, 2005. "Efficiency investigation of a new-design air solar plate collector used in a humidification–dehumidification desalination process," Renewable Energy, Elsevier, vol. 30(9), pages 1309-1327.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:9:p:1309-1327
    DOI: 10.1016/j.renene.2004.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104003751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hollick, J.C., 1994. "Unglazed solar wall air heaters," Renewable Energy, Elsevier, vol. 5(1), pages 415-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabeel, A.E. & Hamed, Mofreh H. & Omara, Z.M. & Kandeal, A.W., 2017. "Solar air heaters: Design configurations, improvement methods and applications – A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1189-1206.
    2. Li, Bojia & You, Shijun & Ye, Tianzhen & Zhang, Huan & Li, Xianli & Li, Chao, 2014. "Mathematical modeling and experimental verification of vacuum glazed transpired solar collector with slit-like perforations," Renewable Energy, Elsevier, vol. 69(C), pages 43-49.
    3. Karsli, Suleyman, 2007. "Performance analysis of new-design solar air collectors for drying applications," Renewable Energy, Elsevier, vol. 32(10), pages 1645-1660.
    4. Hu, Jianjun & Liu, Kaitong & Guo, Meng & Zhang, Guangqiu & Chu, Zhongliang & Wang, Meida, 2019. "Performance improvement of baffle-type solar air collector based on first chamber narrowing," Renewable Energy, Elsevier, vol. 135(C), pages 701-710.
    5. Lawal, Dahiru U. & Qasem, Naef A.A., 2020. "Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    6. Hu, Jianjun & Guo, Meng & Guo, Jinyong & Zhang, Guangqiu & Zhang, Yuwen, 2020. "Numerical and experimental investigation of solar air collector with internal swirling flow," Renewable Energy, Elsevier, vol. 162(C), pages 2259-2271.
    7. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peci López, F. & Ruiz de Adana Santiago, M., 2015. "Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain," Renewable Energy, Elsevier, vol. 75(C), pages 524-533.
    2. Paya-Marin, Miguel A. & Roy, Krishanu & Chen, Jian-Fei & Masood, Rehan & Lawson, R. Mark & Gupta, Bhaskar Sen & Lim, James B.P., 2020. "Large-scale experiment of a novel non-domestic building using BPSC systems for energy saving," Renewable Energy, Elsevier, vol. 152(C), pages 799-811.
    3. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    4. Gholampour, Maysam & Ameri, Mehran, 2016. "Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study," Applied Energy, Elsevier, vol. 164(C), pages 837-856.
    5. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Shen, Jingchun & Zhang, Xingxing & Yang, Tong & Tang, Llewellyn & Cheshmehzangi, Ali & Wu, Yupeng & Huang, Guiqin & Zhong, Dan & Xu, Peng & Liu, Shengchun, 2016. "Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin–fin flow channel for building integration," Applied Energy, Elsevier, vol. 168(C), pages 48-64.
    7. Poole, Mark R. & Shah, Sanjay B. & Boyette, Michael D. & Grimes, Jesse L. & Stikeleather, Larry F., 2018. "Evaluation of landscape fabric as a solar air heater," Renewable Energy, Elsevier, vol. 127(C), pages 998-1003.
    8. Peci, F. & Comino, F. & Ruiz de Adana, M., 2018. "Performance of an unglazed transpire collector in the facade of a building for heating and cooling in combination with a desiccant evaporative cooler," Renewable Energy, Elsevier, vol. 122(C), pages 460-471.
    9. Boutin, Yanik & Gosselin, Louis, 2009. "Optimal mixed convection for maximal energy recovery with vertical porous channel (solar wall)," Renewable Energy, Elsevier, vol. 34(12), pages 2714-2721.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:9:p:1309-1327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.