IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics0960148123008790.html
   My bibliography  Save this article

Maximum power point tracking control strategy based on frequency and amplitude control for the wave energy conversion system

Author

Listed:
  • Dong, Feng
  • Pan, Shangzhi
  • Gong, Jinwu
  • Cai, Yuanqi

Abstract

This paper presents a pendulum-type wave energy conversion (WEC) system, which can change its natural frequency by a center of gravity adjustment mechanism. Based on this characteristic, a frequency and amplitude control (FAC) strategy is proposed to realize the maximum power point tracking (MPPT) of the WEC system. Firstly, the natural frequency of the WEC system is adjusted according to the peak frequency of the wave spectrum to make the device resonate with the waves, which is the frequency control (FC) method. The essence of the FC method is to change the position of the mass block inside the pendulum by controlling the angular displacement of the motor, so as to change the moment of inertia and recovery stiffness of the device. Secondly, the load of the mass block is very large, which brings a great challenge to the motor starting, so this paper proposes a soft-start control strategy to solve this problem. Thirdly, a weighted average method is proposed to calculate the intrinsic impedance of the WEC system under irregular waves, and then make the mechanical resistance of the power take-off (PTO) system equal to the intrinsic impedance of the WEC system by controlling the damping torque of the generator, which is the amplitude control (AC) method. By combining the FC method and AC method, the amplitude and phase conditions can be satisfied simultaneously to realize the MPPT of the WEC system. Finally, the feasibility and accuracy of the proposed control strategies are verified by simulation results.

Suggested Citation

  • Dong, Feng & Pan, Shangzhi & Gong, Jinwu & Cai, Yuanqi, 2023. "Maximum power point tracking control strategy based on frequency and amplitude control for the wave energy conversion system," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008790
    DOI: 10.1016/j.renene.2023.118973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123008790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bódai, Tamás & Srinil, Narakorn, 2015. "Performance analysis and optimization of a box-hull wave energy converter concept," Renewable Energy, Elsevier, vol. 81(C), pages 551-565.
    2. Asai, Takehiko & Sugiura, Keita, 2021. "Numerical evaluation of a two-body point absorber wave energy converter with a tuned inerter," Renewable Energy, Elsevier, vol. 171(C), pages 217-226.
    3. Yue, Xuhui & Geng, Dazhou & Chen, Qijuan & Zheng, Yang & Gao, Gongzheng & Xu, Lei, 2021. "2-D lookup table based MPPT: Another choice of improving the generating capacity of a wave power system," Renewable Energy, Elsevier, vol. 179(C), pages 625-640.
    4. Wu, Shuping & Liu, Chuanyu & Chen, Xinping, 2015. "Offshore wave energy resource assessment in the East China Sea," Renewable Energy, Elsevier, vol. 76(C), pages 628-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Xuhui Yue & Jintao Zhang & Feifeng Meng & Jiaying Liu & Qijuan Chen & Dazhou Geng, 2023. "Multi-Timescale Lookup Table Based Maximum Power Point Tracking of an Inverse-Pendulum Wave Energy Converter: Power Assessments and Sensitivity Study," Energies, MDPI, vol. 16(17), pages 1-25, August.
    3. Xuhui Yue & Feifeng Meng & Zhoubo Tong & Qijuan Chen & Dazhou Geng & Jiaying Liu, 2023. "Implementation Process Simulation and Performance Analysis for the Multi-Timescale Lookup-Table-Based Maximum Power Point Tracking under Variable Irregular Waves," Energies, MDPI, vol. 16(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamranzad, Bahareh & Takara, Kaoru, 2020. "A climate-dependent sustainability index for wave energy resources in Northeast Asia," Energy, Elsevier, vol. 209(C).
    2. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Li, Jiangxia & Pan, Shunqi & Chen, Yongping & Yao, Yu & Xu, Conghao, 2022. "Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas," Energy, Elsevier, vol. 260(C).
    4. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
    5. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    6. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    7. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    8. Hemer, Mark A. & Zieger, Stefan & Durrant, Tom & O'Grady, Julian & Hoeke, Ron K. & McInnes, Kathleen L. & Rosebrock, Uwe, 2017. "A revised assessment of Australia's national wave energy resource," Renewable Energy, Elsevier, vol. 114(PA), pages 85-107.
    9. Zian Wang & Zheng Gong & Yang Yang & Yongzhen Liu & Pengcheng Cai & Chengxi Zhang, 2022. "Guidance Law for Autonomous Takeoff and Landing of Unmanned Helicopter on Mobile Platform Based on Asymmetric Tracking Differentiator," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    10. Canals Silander, Miguel F. & García Moreno, Carlos G., 2019. "On the spatial distribution of the wave energy resource in Puerto Rico and the United States Virgin Islands," Renewable Energy, Elsevier, vol. 136(C), pages 442-451.
    11. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.
    12. Sánchez, Antonio Santos & Rodrigues, Diego Arruda & Fontes, Raony Maia & Martins, Márcio Fernandes & Kalid, Ricardo de Araújo & Torres, Ednildo Andrade, 2018. "Wave resource characterization through in-situ measurement followed by artificial neural networks' modeling," Renewable Energy, Elsevier, vol. 115(C), pages 1055-1066.
    13. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    14. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Li, Mingxin & Yuan, Zhiming & Incecik, Atilla, 2022. "Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure," Applied Energy, Elsevier, vol. 306(PA).
    15. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    16. Bingölbali, Bilal & Majidi, Ajab Gul & Akpınar, Adem, 2021. "Inter- and intra-annual wave energy resource assessment in the south-western Black Sea coast," Renewable Energy, Elsevier, vol. 169(C), pages 809-819.
    17. Han, Meng & Cao, Feifei & Shi, Hongda & Zhu, Kai & Dong, Xiaochen & Li, Demin, 2023. "Layout optimisation of the two-body heaving wave energy converter array," Renewable Energy, Elsevier, vol. 205(C), pages 410-431.
    18. Xuhui Yue & Feifeng Meng & Zhoubo Tong & Qijuan Chen & Dazhou Geng & Jiaying Liu, 2023. "Implementation Process Simulation and Performance Analysis for the Multi-Timescale Lookup-Table-Based Maximum Power Point Tracking under Variable Irregular Waves," Energies, MDPI, vol. 16(22), pages 1-26, November.
    19. Chen, Zhongfei & Zhou, Binzhen & Zhang, Liang & Li, Can & Zang, Jun & Zheng, Xiongbo & Xu, Jianan & Zhang, Wanchao, 2018. "Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system," Energy, Elsevier, vol. 165(PA), pages 1008-1020.
    20. Gao, Hong & Yu, Yang, 2018. "The dynamics and power absorption of cone-cylinder wave energy converters with three degree of freedom in irregular waves," Energy, Elsevier, vol. 143(C), pages 833-845.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.