IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp875-886.html
   My bibliography  Save this article

Numerical investigation on thermal performance enhancement mechanism of tunnel lining GHEs using two-phase closed thermosyphons for building cooling

Author

Listed:
  • Li, Chenglin
  • Zhang, Guozhu
  • Xiao, Suguang
  • Shi, Yehui
  • Xu, Chenghua
  • Sun, Yinjuan

Abstract

To date, the tunnel lining GHEs have encountered issues with the relatively low heat exchange rate and the rapid decline of heat exchange rate with time. This is because the huge heat accumulation around the tunnel lining GHEs obstructs the heat transfer between the absorber pipe and the surrounding rock during the GHEs operation. Hence, to improve the heat accumulation and enhance heat exchange rate, the two-phase closed thermosyphon (TPCT), an efficient device for long-distance heat transfer, was employed in the tunnel lining GHEs to build a thermally induced channel between absorber pipes and the surrounding rock, accelerating heat transfer between the absorber pipe and surrounding rock. The heat transfer model of the tunnel lining GHEs using TPCTs was built to analyze the thermal performance enhancement mechanism of tunnel lining GHEs using TPCTs for building cooling with different thermal conductivities of primary lining concrete and surrounding rock, and convective heat transfer coefficients (CHTCs) on tunnel internal walls. The results showed that throughout a 90-day operation, TPCTs dramatically boosted the heat injection rate of tunnel lining GHEs from 16.5 to 27.0 W/m2 with an increase of 63.6%. Thermal conductivities of the primary tunnel lining concrete have significant effects on the heat injection rates of the GHEs with TPCTs. The heat injection rates increased from 27.0 to 36.4 W/m2 as thermal conductivities of the concrete increased from 1.85 to 10.7 W/m K, and the enhancement rate ranged from 63.6% to 94.7% when compared to tunnel lining GHEs without TPCTs. The enhancement rate of tunnel lining GHEs with TPCTs decreased with increasing thermal conductivity of surrounding rock and CHTC, reaching up to 122.1% under the thermal conductivity of 1.4 W/m K and CHTC of 0 W/m2 K. Overall, TPCT greatly enhances the heat injection rate of tunnel lining GHEs, implying that it is a promising technology.

Suggested Citation

  • Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Shi, Yehui & Xu, Chenghua & Sun, Yinjuan, 2023. "Numerical investigation on thermal performance enhancement mechanism of tunnel lining GHEs using two-phase closed thermosyphons for building cooling," Renewable Energy, Elsevier, vol. 212(C), pages 875-886.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:875-886
    DOI: 10.1016/j.renene.2023.05.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123007474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Wei & Zheng, Changjin & Yang, Jiaming, 2021. "Heat transfer rate characteristics of two-phase closed thermosyphon heat exchanger," Renewable Energy, Elsevier, vol. 177(C), pages 397-410.
    2. Pei, Wansheng & Zhang, Mingyi & Lai, Yuanming & Yan, Zhongrui & Li, Shuangyang, 2019. "Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions," Energy, Elsevier, vol. 179(C), pages 655-668.
    3. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    4. Ma, Limin & Shang, Linlin & Zhong, Dan & Ji, Zhongli, 2017. "Experimental investigation of a two-phase closed thermosyphon charged with hydrocarbon and Freon refrigerants," Applied Energy, Elsevier, vol. 207(C), pages 665-673.
    5. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    6. Insana, A. & Barla, M., 2020. "Experimental and numerical investigations on the energy performance of a thermo-active tunnel," Renewable Energy, Elsevier, vol. 152(C), pages 781-792.
    7. Ma, Chunjing & Donna, Alice Di & Dias, Daniel & Zhang, Jiamin, 2021. "Numerical investigations of the tunnel environment effect on the performance of energy tunnels," Renewable Energy, Elsevier, vol. 172(C), pages 1279-1292.
    8. Liu, Zhijian & Xu, Wei & Qian, Cheng & Chen, Xi & Jin, Guangya, 2015. "Investigation on the feasibility and performance of ground source heat pump (GSHP) in three cities in cold climate zone, China," Renewable Energy, Elsevier, vol. 84(C), pages 89-96.
    9. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    10. Lee, Chulho & Park, Sangwoo & Won, Jongmuk & Jeoung, Jaehyeung & Sohn, Byonghu & Choi, Hangseok, 2012. "Evaluation of thermal performance of energy textile installed in Tunnel," Renewable Energy, Elsevier, vol. 42(C), pages 11-22.
    11. Ogunleye, Oluwaseun & Singh, Rao Martand & Cecinato, Francesco & Chan Choi, Jung, 2020. "Effect of intermittent operation on the thermal efficiency of energy tunnels under varying tunnel air temperature," Renewable Energy, Elsevier, vol. 146(C), pages 2646-2658.
    12. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Xie, Yongli & Liu, Xiaohua & Cao, Shiding, 2022. "Long-term operation of tunnel-lining ground heat exchangers in tropical zones: Energy, environmental, and economic performance evaluation," Renewable Energy, Elsevier, vol. 196(C), pages 1429-1442.
    13. Srimuang, W. & Amatachaya, P., 2012. "A review of the applications of heat pipe heat exchangers for heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4303-4315.
    14. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    15. Jafari, Davoud & Franco, Alessandro & Filippeschi, Sauro & Di Marco, Paolo, 2016. "Two-phase closed thermosyphons: A review of studies and solar applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 575-593.
    16. Wang, Jing & Mao, Jinfeng & Han, Xu & Li, Yong, 2021. "Study on analytical solution model of heat transfer of ground heat exchanger in the protection engineering structure," Renewable Energy, Elsevier, vol. 179(C), pages 998-1008.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Xie, Yongli & Liu, Xiaohua & Cao, Shiding, 2022. "Long-term operation of tunnel-lining ground heat exchangers in tropical zones: Energy, environmental, and economic performance evaluation," Renewable Energy, Elsevier, vol. 196(C), pages 1429-1442.
    2. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Geisler, T. & Wolf, M. & Götzl, G. & Burger, U. & Cordes, T. & Voit, K. & Straka, W. & Nyeki, E. & Haslinger, E. & Auer, R. & Lauermann, M. & Pol, O. & Obradovic, M. & Pröll, T. & Marcher, T., 2023. "Optimizing the geothermal potential of tunnel water by separating colder sectional discharges - Case study Brenner Base Tunnel," Renewable Energy, Elsevier, vol. 203(C), pages 529-541.
    4. Ma, Chunjing & Donna, Alice Di & Dias, Daniel & Zhang, Jiamin, 2021. "Numerical investigations of the tunnel environment effect on the performance of energy tunnels," Renewable Energy, Elsevier, vol. 172(C), pages 1279-1292.
    5. Liu, Jiaxin & Han, Chanjuan, 2023. "Design and optimization of heat extraction section in energy tunnel using simulated annealing algorithm," Renewable Energy, Elsevier, vol. 213(C), pages 218-232.
    6. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Pei, Wansheng & Zhang, Mingyi & Lai, Yuanming & Yan, Zhongrui & Li, Shuangyang, 2019. "Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions," Energy, Elsevier, vol. 179(C), pages 655-668.
    8. Wang, Wei-Wei & Zhang, Hong-Liang & Song, Yong-Juan & Song, Jia-Wei & Shi, Dun-Ke & Zhao, Fu-Yun & Cai, Yang, 2022. "Fluid flow and thermal performance of the pulsating heat pipes facilitated with solar collectors: Experiments, theories and GABPNN machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1533-1547.
    9. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    10. Ji, Yongming & Wu, Wenze & Hu, Songtao, 2023. "Long-term performance of a front-end capillary heat exchanger for a metro source heat pump system," Applied Energy, Elsevier, vol. 335(C).
    11. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    12. Cao, Yapeng & Li, Guoyu & Ma, Wei & Chen, Dun & Shang, Yunhu & Wu, Gang & Gao, Kai & Ying, Sai, 2023. "Permafrost degradation induced by warm-oil pipelines and analytical results of thermosyphon-based thawing mitigation," Energy, Elsevier, vol. 269(C).
    13. Liu, Lijun & Zhang, Quan & Zou, Sikai & Du, Sheng & Meng, Fanxi, 2023. "Experimental study on dynamic thermal characteristics of novel thermosyphon with latent thermal energy storage condenser," Energy, Elsevier, vol. 282(C).
    14. Ji Li & Yuanwei Liu & Ruixue Zhang & Zhijian Liu & Wei Xu & Biao Qiao & Xiaomei Feng, 2018. "Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform," Energies, MDPI, vol. 11(5), pages 1-15, May.
    15. Ma, Xiaojing & Xu, Jinliang & Xie, Jian, 2021. "In-situ phase separation to improve phase change heat transfer performance," Energy, Elsevier, vol. 230(C).
    16. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    17. Pei, Wansheng & Zhang, Mingyi & Li, Shuangyang & Lai, Yuanming & Dong, Yuanhong & Jin, Long, 2019. "Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization," Renewable Energy, Elsevier, vol. 133(C), pages 1178-1187.
    18. Hongyu Zhang & Fei Gan & Guangqin Huang & Chunlong Zhuang & Xiaodong Shen & Shengbo Li & Lei Cheng & Shanshan Hou & Ningge Xu & Zhenqun Sang, 2022. "Study on Heat Storage Performance of Phase Change Reservoir in Underground Protection Engineering," Energies, MDPI, vol. 15(15), pages 1-31, August.
    19. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    20. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:875-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.