IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp552-565.html
   My bibliography  Save this article

Transfer learning and direct probability integral method based reliability analysis for offshore wind turbine blades under multi-physics coupling

Author

Listed:
  • Zhang, Xiaoling
  • Zhang, Kejia
  • Yang, Xiao
  • Fazeres-Ferradosa, Tiago
  • Zhu, Shun-Peng

Abstract

Reliability of blades has a profound impact on both serviceability and safety of offshore wind turbines. Reliability estimation of wind turbine blade is a complex and time-consuming problem with multi-physics coupling and multi-failure modes correlation. Developing physics-of-failure modeling and reliability analysis methods with high efficiency and accuracy is a long-term challenge. In this work, a high availability and cost-effectiveness reliability estimation framework for offshore wind turbine blade by combining transfer learning (TL) and direct probability integral method (DPIM) is proposed. Extensive performance simulation of offshore wind turbine blade is a complex and necessary task, this paper develops a new adaptive sampling strategy to improve the validity of sample selection in the design space; On this basis, a physics-of-failure surrogate modeling approach is proposed by introducing TL method to fuse two kinds of multi-physics coupling analysis data, then the performance of all critical loads can be predicted efficiently in advance to provide a reliable design; Further, this paper provides an efficient reliability estimation method for offshore wind turbine blades by combining DPIM and surrogate model. Finally, the validity of the proposed approach is illustrated by numerical example and offshore wind turbine blade reliability estimation. The proposed framework provides a cost-effective alternative to higher loads simulation efforts and safety factors selection.

Suggested Citation

  • Zhang, Xiaoling & Zhang, Kejia & Yang, Xiao & Fazeres-Ferradosa, Tiago & Zhu, Shun-Peng, 2023. "Transfer learning and direct probability integral method based reliability analysis for offshore wind turbine blades under multi-physics coupling," Renewable Energy, Elsevier, vol. 206(C), pages 552-565.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:552-565
    DOI: 10.1016/j.renene.2023.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Slot, René M.M. & Sørensen, John D. & Sudret, Bruno & Svenningsen, Lasse & Thøgersen, Morten L., 2020. "Surrogate model uncertainty in wind turbine reliability assessment," Renewable Energy, Elsevier, vol. 151(C), pages 1150-1162.
    2. Pinar Pérez, Jesús María & García Márquez, Fausto Pedro & Tobias, Andrew & Papaelias, Mayorkinos, 2013. "Wind turbine reliability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 463-472.
    3. Larwood, Scott & van Dam, C.P. & Schow, Daniel, 2014. "Design studies of swept wind turbine blades," Renewable Energy, Elsevier, vol. 71(C), pages 563-571.
    4. Vučina, Damir & Marinić-Kragić, Ivo & Milas, Zoran, 2016. "Numerical models for robust shape optimization of wind turbine blades," Renewable Energy, Elsevier, vol. 87(P2), pages 849-862.
    5. Yu, Dong Ok & Kwon, Oh Joon, 2014. "Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method," Renewable Energy, Elsevier, vol. 70(C), pages 184-196.
    6. Murray, Robynne E. & Beach, Ryan & Barnes, David & Snowberg, David & Berry, Derek & Rooney, Samantha & Jenks, Mike & Gage, Bill & Boro, Troy & Wallen, Sara & Hughes, Scott, 2021. "Structural validation of a thermoplastic composite wind turbine blade with comparison to a thermoset composite blade," Renewable Energy, Elsevier, vol. 164(C), pages 1100-1107.
    7. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
    8. Liu, Wenyi & Tang, Baoping & Jiang, Yonghua, 2010. "Status and problems of wind turbine structural health monitoring techniques in China," Renewable Energy, Elsevier, vol. 35(7), pages 1414-1418.
    9. Fabian Vorpahl & Holger Schwarze & Tim Fischer & Marc Seidel & Jason Jonkman, 2013. "Offshore wind turbine environment, loads, simulation, and design," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(5), pages 548-570, September.
    10. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    11. Jie Zhu & Xiaohui Ni & Xiaomei Shen, 2020. "Aerodynamic and structural optimization of wind turbine blade with static aeroelastic effects," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 15(1), pages 55-64.
    12. Pourrajabian, Abolfazl & Nazmi Afshar, Peyman Amir & Ahmadizadeh, Mehdi & Wood, David, 2016. "Aero-structural design and optimization of a small wind turbine blade," Renewable Energy, Elsevier, vol. 87(P2), pages 837-848.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    2. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    3. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    4. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Baniassadi, Amir & Shirinbakhsh, Mehrdad & Torabi, Farschad, 2017. "Multivariate optimization of off-grid wind turbines with variable demand - Case study of a remote commercial building," Renewable Energy, Elsevier, vol. 101(C), pages 1021-1029.
    6. Jannie Sønderkær Nielsen & Henrik Stensgaard Toft & Gustavo Oliveira Violato, 2023. "Risk-Based Assessment of the Reliability Level for Extreme Limit States in IEC 61400-1," Energies, MDPI, vol. 16(4), pages 1-15, February.
    7. Siddiqui, Muhammad Omer & Feja, Paul Robert & Borowski, Philipp & Kyling, Hans & Nejad, Amir R. & Wenske, Jan, 2023. "Wind turbine nacelle testing: State-of-the-art and development trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Liu, W.Y. & Zhang, W.H. & Han, J.G. & Wang, G.F., 2012. "A new wind turbine fault diagnosis method based on the local mean decomposition," Renewable Energy, Elsevier, vol. 48(C), pages 411-415.
    9. Tang, Baoping & Liu, Wenyi & Song, Tao, 2010. "Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution," Renewable Energy, Elsevier, vol. 35(12), pages 2862-2866.
    10. Bon-Yong Koo & Dae-Yi Jung, 2019. "A Comparative Study on Primary Bearing Rating Life of a 5-MW Two-Blade Wind Turbine System Based on Two Different Control Domains," Energies, MDPI, vol. 12(13), pages 1-16, July.
    11. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    12. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    13. Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
    14. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    15. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    18. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    19. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    20. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:552-565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.