IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp677-685.html
   My bibliography  Save this article

S-scheme 3D/2D NiCo2O4@g-C3N4 hybridized system for boosting hydrogen production from water splitting

Author

Listed:
  • Ding, Qun
  • Zou, Xuejun
  • Ke, Jun
  • Dong, Yuying
  • Cui, Yubo
  • Lu, Guang
  • Ma, Hongchao

Abstract

Photocatalytic H2 production from water splitting is always considered as a renewable and sustainable process for converting solar energy into chemical energy. In this study, a 3D/2D NiCo2O4/g-C3N4 (NCO/g-CN) S-scheme heterojunction is constructed to boost H2 evolution under visible light irradiation. After adding NiCo2O4 nanoballs, the H2 generation has been significantly enhanced by effectively adjusting the moving routes of photoinduced electrons and holes and the maximum H2 generation reaches 21.2 μmol∙h−1 of H2 yield over 3%NCO/g-CN, which is 4.16 times higher than that of the pure g-C3N4 (5.1 μmol∙h−1). The above data can show that the g-C3N4 modified 3D NiCo2O4 nanoballs performs well in hydrogen production and the photocatalytic activity is significantly improved. To further understand the reason for boosted photochemical catalysis activities, the physical as well as chemical properties of the NCO/g-CN are explored. The results display that the construction of 3D/2D S-scheme heterojunction between 3D NiCo2O4 and 2D g-C3N4 extends the range of visible light, obtains excellent photo redox ability, and inhibits charge recombination efficiency. Such a novel photocatalyst responding to visible light provides a new choice for efficient H2 production by utilizing the solar energy.

Suggested Citation

  • Ding, Qun & Zou, Xuejun & Ke, Jun & Dong, Yuying & Cui, Yubo & Lu, Guang & Ma, Hongchao, 2023. "S-scheme 3D/2D NiCo2O4@g-C3N4 hybridized system for boosting hydrogen production from water splitting," Renewable Energy, Elsevier, vol. 203(C), pages 677-685.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:677-685
    DOI: 10.1016/j.renene.2022.12.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122019127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Xiaokang & Gu, Tao & Fan, Miaomiao & Chen, Haifei & Yu, Bendong, 2022. "A novel solar PV/T driven photocatalytic multifunctional system: Concept proposal and performance investigation," Renewable Energy, Elsevier, vol. 196(C), pages 1127-1141.
    2. Chen, Ruijie & Zhang, Zhiqiang & Wu, Jun & Chen, Xueru & Wang, Lei & Yin, Haotian & Li, Hongping & Ding, Jing & Wan, Hui & Guan, Guofeng, 2022. "“Carbon diffusion” engineered carbon nitride nanosheets for high-efficiency photocatalytic solar-to-fuels conversion," Renewable Energy, Elsevier, vol. 197(C), pages 943-952.
    3. Liu, Tianxia & Yang, Kaicheng & Gong, Haiming & Jin, Zhiliang, 2021. "Visible-light driven S-scheme Mn0.2Cd0.8S/CoTiO3 heterojunction for photocatalytic hydrogen evolution," Renewable Energy, Elsevier, vol. 173(C), pages 389-400.
    4. Shi, Weilong & Sun, Wei & Liu, Yanan & Li, Xiangyu & Lin, Xue & Guo, Feng & Hong, Yuanzhi, 2022. "Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation," Renewable Energy, Elsevier, vol. 182(C), pages 958-968.
    5. Zhigang Zou & Jinhua Ye & Kazuhiro Sayama & Hironori Arakawa, 2001. "Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst," Nature, Nature, vol. 414(6864), pages 625-627, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.
    2. Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
    3. Fayun Li & Meixia Lin, 2020. "Synthesis of Biochar-Supported K-doped g-C 3 N 4 Photocatalyst for Enhancing the Polycyclic Aromatic Hydrocarbon Degradation Activity," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    4. Guo, Feng & Chen, Zhihao & Shi, Yuxing & Cao, Longwen & Cheng, Xiaofang & Shi, Weilong & Chen, Lizhuang & Lin, Xue, 2022. "A ragged porous hollow tubular carbon nitride towards boosting visible-light photocatalytic hydrogen production in water and seawater," Renewable Energy, Elsevier, vol. 188(C), pages 1-10.
    5. Guo, Yuwei & Li, Yun & Li, Shuguang & Zhang, Lei & Li, Ying & Wang, Jun, 2015. "Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for hydrogen evolution from aqueous methanol solut," Energy, Elsevier, vol. 82(C), pages 72-79.
    6. Das, Sreejon & Wan Daud, W.M.A., 2014. "Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 765-805.
    7. Jin, Zhiliang & Jiang, Xudong & Liu, Yanan, 2022. "Graphdiyne(CnH2n-2) based NiS S-scheme heterojunction for efficient photocatalytic hydrogen production," Renewable Energy, Elsevier, vol. 201(P1), pages 854-863.
    8. Hu, Yuchao & Mao, Liuhao & Guan, Xiangjiu & Tucker, Kevin Andrew & Xie, Huling & Wu, Xuesong & Shi, Jinwen, 2020. "Layered perovskite oxides and their derivative nanosheets adopting different modification strategies towards better photocatalytic performance of water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Gupta, Bhavana & Melvin, Ambrose A. & Matthews, Tom & Dash, S. & Tyagi, A.K., 2016. "TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1366-1375.
    10. Pavlos Psathas & Maria Solakidou & Asterios Mantzanis & Yiannis Deligiannakis, 2021. "Flame Spray Pyrolysis Engineering of Nanosized Mullite-Bi 2 Fe 4 O 9 and Perovskite-BiFeO 3 as Highly Efficient Photocatalysts for O 2 Production from H 2 O Splitting," Energies, MDPI, vol. 14(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:677-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.