IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp1-10.html
   My bibliography  Save this article

A ragged porous hollow tubular carbon nitride towards boosting visible-light photocatalytic hydrogen production in water and seawater

Author

Listed:
  • Guo, Feng
  • Chen, Zhihao
  • Shi, Yuxing
  • Cao, Longwen
  • Cheng, Xiaofang
  • Shi, Weilong
  • Chen, Lizhuang
  • Lin, Xue

Abstract

Photocatalytic water splitting to produce hydrogen, especially seawater, shows great economic value and development prospects to deal with the energy crisis. In this paper, urea and melamine were employed as base precursor materials to obtain four different morphologies of tubular g-C3N4: stacked rectangular thin plates with flocculent structure, ragged porous hollow tubes, porous hollow tubes and tetragonal hollow prismatic tubes by simply regulating the heating rate. Among them, the ragged porous hollow tubular g-C3N4 (TCN-1.5) exhibit an amazing hydrogen evolution rate of 8683 μmol h−1 g−1 from water, which is 19.3 times that of the massive g-C3N4 (449 μmol h−1 g−1), and still maintain a high hydrogen evolution rate (6782 μmol h−1g−1) from sea water. The analysis results show that by controlling the change of the heating rate, the ammonia overflow rate can be effectively controlled to produce abundant voids and pits to form volume defects, which can exhibit higher specific surface area and serve as a highly active center for the catalytic reaction and effectively improve the photocatalytic performance. This study provides a simple design idea to construct a novel type of ragged porous hollow tubular g-C3N4 for efficient photocatalytic hydrogen production from water and seawater.

Suggested Citation

  • Guo, Feng & Chen, Zhihao & Shi, Yuxing & Cao, Longwen & Cheng, Xiaofang & Shi, Weilong & Chen, Lizhuang & Lin, Xue, 2022. "A ragged porous hollow tubular carbon nitride towards boosting visible-light photocatalytic hydrogen production in water and seawater," Renewable Energy, Elsevier, vol. 188(C), pages 1-10.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:1-10
    DOI: 10.1016/j.renene.2022.01.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Enli & Lin, Xue & Hong, Yuanzhi & Yang, Lan & Luo, Bifu & Shi, Weilong & Shi, Junyou, 2021. "Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution," Renewable Energy, Elsevier, vol. 178(C), pages 757-765.
    2. Shi, Weilong & Sun, Wei & Liu, Yanan & Li, Xiangyu & Lin, Xue & Guo, Feng & Hong, Yuanzhi, 2022. "Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation," Renewable Energy, Elsevier, vol. 182(C), pages 958-968.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ruijie & Zhang, Zhiqiang & Wu, Jun & Chen, Xueru & Wang, Lei & Yin, Haotian & Li, Hongping & Ding, Jing & Wan, Hui & Guan, Guofeng, 2022. "“Carbon diffusion” engineered carbon nitride nanosheets for high-efficiency photocatalytic solar-to-fuels conversion," Renewable Energy, Elsevier, vol. 197(C), pages 943-952.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ruijie & Zhang, Zhiqiang & Wu, Jun & Chen, Xueru & Wang, Lei & Yin, Haotian & Li, Hongping & Ding, Jing & Wan, Hui & Guan, Guofeng, 2022. "“Carbon diffusion” engineered carbon nitride nanosheets for high-efficiency photocatalytic solar-to-fuels conversion," Renewable Energy, Elsevier, vol. 197(C), pages 943-952.
    2. Belessiotis, George V. & Kontos, Athanassios G., 2022. "Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives," Renewable Energy, Elsevier, vol. 195(C), pages 497-515.
    3. Ding, Qun & Zou, Xuejun & Ke, Jun & Dong, Yuying & Cui, Yubo & Lu, Guang & Ma, Hongchao, 2023. "S-scheme 3D/2D NiCo2O4@g-C3N4 hybridized system for boosting hydrogen production from water splitting," Renewable Energy, Elsevier, vol. 203(C), pages 677-685.
    4. Shi, Weilong & Sun, Wei & Liu, Yanan & Li, Xiangyu & Lin, Xue & Guo, Feng & Hong, Yuanzhi, 2022. "Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation," Renewable Energy, Elsevier, vol. 182(C), pages 958-968.
    5. Sun, Zhen & Wang, Junxiang & Lu, Sen & Zhang, Guan, 2022. "Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst," Renewable Energy, Elsevier, vol. 197(C), pages 151-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.