IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp826-839.html
   My bibliography  Save this article

Assessment of parapet effect on wind flow properties and wind energy potential over roofs of tall buildings

Author

Listed:
  • Dai, S.F.
  • Liu, H.J.
  • Peng, H.Y.

Abstract

Wind energy harnessing in built environment contributes to the development of sustainable cities. In this study, flow features and wind energy over roofs with various parapet heights were investigated via computational fluid dynamics simulations. Effects of normalized parapet height (hp/H = 0, 1/320, 1/160, 3/320, and 1/80) and wind angle θ were examined. Moreover, flow features and associated aerodynamic mechanisms were investigated. Effect of hp/H on flow features and wind energy potential depended on roof locations and θ. Parapets had the greatest effect on velocity and turbulence intensity at θ = 45°. At θ = 45°, the largest u occurred at large heights as hp/H increased because parapets would lift up the roof flows. The largest amplification factor of wind energy decreased linearly as hp/H increased from 0 to 1/160, whereas no obvious variations for hp/H were observed from 1/160 to 1/80. The average hub height increased from 1.13 to 1.16 as hp/H increased from 0 to 1/80, indicating potential higher installation cost of wind turbines for larger hp/H. Analysis of parapet height is required to fully assess the wind energy potential and determine the layout of rooftop wind turbines.

Suggested Citation

  • Dai, S.F. & Liu, H.J. & Peng, H.Y., 2022. "Assessment of parapet effect on wind flow properties and wind energy potential over roofs of tall buildings," Renewable Energy, Elsevier, vol. 199(C), pages 826-839.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:826-839
    DOI: 10.1016/j.renene.2022.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Dai, S.F. & Liu, H.J. & Chu, Y.J. & Lam, H.F. & Peng, H.Y., 2022. "Impact of corner modification on wind characteristics and wind energy potential over flat roofs of tall buildings," Energy, Elsevier, vol. 241(C).
    3. Lu, Lin & Ip, Ka Yan, 2009. "Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 450-461, February.
    4. Takaaki Kono & Tetsuya Kogaki & Takahiro Kiwata, 2016. "Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building," Energies, MDPI, vol. 9(11), pages 1-20, November.
    5. Ledo, L. & Kosasih, P.B. & Cooper, P., 2011. "Roof mounting site analysis for micro-wind turbines," Renewable Energy, Elsevier, vol. 36(5), pages 1379-1391.
    6. KC, Anup & Whale, Jonathan & Evans, Samuel P. & Clausen, Philip D., 2020. "An investigation of the impact of wind speed and turbulence on small wind turbine operation and fatigue loads," Renewable Energy, Elsevier, vol. 146(C), pages 87-98.
    7. Dar, Arslan Salim & Armengol Barcos, Guillem & Porté-Agel, Fernando, 2022. "An experimental investigation of a roof-mounted horizontal-axis wind turbine in an idealized urban environment," Renewable Energy, Elsevier, vol. 193(C), pages 1049-1061.
    8. Abohela, Islam & Hamza, Neveen & Dudek, Steven, 2013. "Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 1106-1118.
    9. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).
    3. Juan, Yu-Hsuan & Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert & Wen, Chih-Yung & Yang, An-Shik, 2022. "CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height," Applied Energy, Elsevier, vol. 321(C).
    4. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    5. Dai, S.F. & Liu, H.J. & Chu, Y.J. & Lam, H.F. & Peng, H.Y., 2022. "Impact of corner modification on wind characteristics and wind energy potential over flat roofs of tall buildings," Energy, Elsevier, vol. 241(C).
    6. Zhang, Shuaibin & Du, Bowen & Ge, Mingwei & Zuo, Yingtao, 2022. "Study on the operation of small rooftop wind turbines and its effect on the wind environment in blocks," Renewable Energy, Elsevier, vol. 183(C), pages 708-718.
    7. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    8. Škvorc, Petar & Kozmar, Hrvoje, 2021. "Wind energy harnessing on tall buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Jangyoul You & Kipyo You & Minwoo Park & Changhee Lee, 2021. "Airflow Characteristics According to the Change in the Height and Porous Rate of Building Roofs for Efficient Installation of Small Wind Power Generators," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    10. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    11. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    12. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    13. Hernández, Ó. Soto & Volkov, K. & Martín Mederos, A.C. & Medina Padrón, J.F. & Feijóo Lorenzo, A.E., 2015. "Power output of a wind turbine installed in an already existing viaduct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 287-299.
    14. Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
    15. Wang, Qiang & Wang, Jianwen & Hou, Yali & Yuan, Renyu & Luo, Kun & Fan, Jianren, 2018. "Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements," Renewable Energy, Elsevier, vol. 115(C), pages 1118-1133.
    16. Toja-Silva, Francisco & Colmenar-Santos, Antonio & Castro-Gil, Manuel, 2013. "Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 364-378.
    17. Arteaga-López, Ernesto & Angeles-Camacho, César, 2021. "Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines," Energy, Elsevier, vol. 220(C).
    18. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    19. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    20. Yi Song Liu & Tan Yigitcanlar & Mirko Guaralda & Kenan Degirmenci & Aaron Liu & Michael Kane, 2022. "Leveraging the Opportunities of Wind for Cities through Urban Planning and Design: A PRISMA Review," Sustainability, MDPI, vol. 14(18), pages 1-78, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:826-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.