IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp1218-1228.html
   My bibliography  Save this article

Influence of plastic content on synergistic effect and bio-oil quality from the co-pyrolysis of waste rigid polyurethane foam and sawdust mixture

Author

Listed:
  • Stančin, H.
  • Šafář, M.
  • Růžičková, J.
  • Mikulčić, H.
  • Raclavská, H.
  • Wang, X.
  • Duić, N.

Abstract

Current disposal of end-of-life plastics by landfilling or incineration raises serious environmental concerns, simultaneously representing an irretrievable loss of valuable resources. Especially this is evident for materials that have a complex structure, like polyurethane foams. In this work, co-pyrolysis with sawdust was carried out to analyze and evaluate the product quality for further utilization as alternative fuels. The introduction of polyurethane increased the oil yield but in a limited range since no significant difference was observed between the mixture with 25 and 75% of polyurethane content. In addition, the chemical analysis showed that small addition of polyurethane is sufficient to eliminate most of the oxygenated compounds derived from sawdust. Nevertheless, the obtained liquid products are mostly benzenamines that do not meet the criteria for fuel composition. Analysis of the synergistic effect shows that the strongest impact is visible for a small branch of plastic content where liquid yield was promoted at the expense of gas. With a further increment of plastic content, this effect fades away, except for the solid residue where remains constant. Finally, a brief analysis of the gaseous fraction showed that obtained products are preferred in syngas composition, with notable hydrogen yield as the most valuable constituent.

Suggested Citation

  • Stančin, H. & Šafář, M. & Růžičková, J. & Mikulčić, H. & Raclavská, H. & Wang, X. & Duić, N., 2022. "Influence of plastic content on synergistic effect and bio-oil quality from the co-pyrolysis of waste rigid polyurethane foam and sawdust mixture," Renewable Energy, Elsevier, vol. 196(C), pages 1218-1228.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1218-1228
    DOI: 10.1016/j.renene.2022.07.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavaignac, Renata S. & Ferreira, Newton L. & Guardani, Roberto, 2021. "Techno-economic and environmental process evaluation of biogas upgrading via amine scrubbing," Renewable Energy, Elsevier, vol. 171(C), pages 868-880.
    2. Chattopadhyay, Jayeeta & Pathak, T.S. & Srivastava, R. & Singh, A.C., 2016. "Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis," Energy, Elsevier, vol. 103(C), pages 513-521.
    3. Weldekidan, Haftom & Strezov, Vladimir & Li, Rui & Kan, Tao & Town, Graham & Kumar, Ravinder & He, Jing & Flamant, Gilles, 2020. "Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters," Renewable Energy, Elsevier, vol. 151(C), pages 1102-1109.
    4. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    5. Li, Dan & Lei, Shijun & Wang, Ping & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2021. "Study on the pyrolysis behaviors of mixed waste plastics," Renewable Energy, Elsevier, vol. 173(C), pages 662-674.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Xiaona & Lei, Hanwu & Wang, Chenxi & Qian, Moriko & Mateo, Wendy & Chen, Xiaoyun & Guo, Yadong & Huo, Erguang, 2023. "The effects of pore structures and functional groups on the catalytic performance of activated carbon catalysts for the co-pyrolysis of biomass and plastic into aromatics and hydrogen-rich syngas," Renewable Energy, Elsevier, vol. 202(C), pages 855-864.
    2. Jerzak, Wojciech & Wądrzyk, Mariusz & Kalemba-Rec, Izabela & Bieniek, Artur & Magdziarz, Aneta, 2023. "Release of chlorine during oat straw pyrolysis doped with char and ammonium chloride," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    2. Fivga, Antzela & Dimitriou, Ioanna, 2018. "Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment," Energy, Elsevier, vol. 149(C), pages 865-874.
    3. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    4. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    5. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    6. Han, Siyu & Meng, Yuan & Aihemaiti, Aikelaimu & Gao, Yuchen & Ju, Tongyao & Xiang, Honglin & Jiang, Jianguo, 2022. "Biogas upgrading with various single and blended amines solutions: Capacities and kinetics," Energy, Elsevier, vol. 253(C).
    7. Lv, Laiquan & Wang, Jiankang & Ji, Mengting & Zhang, Yize & Huang, Shengyao & Cen, Kefa & Zhou, Hao, 2022. "Effect of structural characteristics and surface functional groups of biochar on thermal properties of different organic phase change materials: Dominant encapsulation mechanisms," Renewable Energy, Elsevier, vol. 195(C), pages 1238-1252.
    8. Jiang, Haifeng & Liu, Haipeng & Dong, Jiaxin & Song, Jiaxing & Deng, Sunhua & Chen, Jie & Zhang, Yu & Hong, Wenpeng, 2022. "Enhancing ketones and syngas production by CO2-assisted catalytic pyrolysis of cellulose with the Ce–Co–Na ternary catalyst," Energy, Elsevier, vol. 250(C).
    9. Khodaei, Hassan & Gonzalez, Luis & Chapela, Sergio & Porteiro, Jacobo & Nikrityuk, Petr & Olson, Chris, 2021. "CFD-based coupled multiphase modeling of biochar production using a large-scale pyrolysis plant," Energy, Elsevier, vol. 217(C).
    10. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    11. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    12. Lucía Quesada & Mónica Calero de Hoces & M. A. Martín-Lara & Germán Luzón & G. Blázquez, 2020. "Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    13. Park, Young-Kwon & Jung, Jaehun & Ryu, Sumin & Lee, Hyung Won & Siddiqui, Muhammad Zain & Jae, Jungho & Watanabe, Atsushi & Kim, Young-Min, 2019. "Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5," Applied Energy, Elsevier, vol. 250(C), pages 1706-1718.
    14. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Krystian Butlewski, 2022. "Concept for Biomass and Organic Waste Refinery Plants Based on the Locally Available Organic Materials in Rural Areas of Poland," Energies, MDPI, vol. 15(9), pages 1-19, May.
    16. Wu, Yujian & Wang, Haoyu & Li, Haoyang & Han, Xue & Zhang, Mingyuan & Sun, Yan & Fan, Xudong & Tu, Ren & Zeng, Yimin & Xu, Chunbao Charles & Xu, Xiwei, 2022. "Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review," Renewable Energy, Elsevier, vol. 196(C), pages 462-481.
    17. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    18. Erxi Wu & Qiaozhi Wang & Lihua Ke & Guangquan Zhang, 2023. "Study on Carbon Emission Characteristics and Emission Reduction Measures of Lime Production—A Case of Enterprise in the Yangtze River Basin," Sustainability, MDPI, vol. 15(13), pages 1-12, June.
    19. Song, Gongxiang & Huang, Dexin & Li, Hanjian & Wang, Xuepeng & Ren, Qiangqiang & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2022. "Pyrolysis reaction mechanism of typical Chinese agriculture and forest waste pellets at high heating rates based on the photo-thermal TGA," Energy, Elsevier, vol. 244(PB).
    20. Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1218-1228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.